z-logo
Discover

Top 4 Journals Classification Systems You Should Know

calendarDec 13, 2024 |clock13 Mins Read

If you’ve ever tried to figure out which journal is the best fit for your research or wondered how journals classification is carried out, you’ve probably come across terms like Quartiles, H-Index, Impact Factor (IF), and Source Normalised Impact per Paper (SNIP). These metrics might sound technical, but they are simply tools to measure how much attention a journal’s research gets. Here’s a straightforward explanation of what they mean and how they work

Quartiles in Journals Classification: Ranking by Performance

The system of dividing journals into four quartiles, Q1, Q2, Q3, and Q4, was created to make it easier to compare their quality and impact within a specific field. This idea became popular through Scopus and Journal Citation Reports (JCR) databases, which rank journals based on metrics like citations. The concept builds on the work of Eugene Garfield, who introduced the Impact Factor, offering a way to see how journals stand up against others. Quartiles break things down further: Q1 represents the top 25% of journals in a category, while Q4 includes those at the lower end. It's a straightforward way to help researchers determine which journals are most influential in their areas of study.

  • Q1: Top 25% of journals in the field (highest-ranked).
  • Q2: 25-50% (mid-high-ranked).
  • Q3: 50-75% (mid-low-ranked).
  • Q4: Bottom 25% (lowest-ranked).
Q1, q2, q3, and q4
Quartiles in Journals Classification
Journals Classification

However, not all Q3 or Q4 journals are necessarily a disadvantage. While they may not be as well-known, they are still important in scientific research. Some of the benefits include:

  • Affordability: These journals are easier for researchers to access, especially for those on a tight budget.
  • Focused Topics: They tend to cover more specific, niche areas of study, making them great for in-depth exploration of certain subjects.
  • Great for New Researchers: Q3 and Q4 journals classification can be a good place for new researchers to publish their first paper and gain experience in the publishing world.
  • Ideal for Basic Research: They’re a great option for research that focuses on the basics of science

Finally, publishing your article in a Q3 or Q4 journal doesn’t mean it lacks value or won’t make an impact. If your work presents new findings that address a real problem, it can still attract attention, even when published in a lower-ranked journal.

H-Index: A Balance of Quantity and Quality

The H-Index score is an important factor in journal classification. It looks at the number of articles a journal has published and how often those articles are cited. It balances quantity (how many articles a journal publishes) with quality (how many of its articles are referenced).

For example, if a journal has an H-Index of 15, it means it has published 15 articles, each cited at least 15 times. It’s a simple way to measure a journal’s influence without focusing too much on just one super-cited article or a bunch of rarely cited ones.

How H-index works:

Let’s say a journal has published 4 articles, and the number of citations for each article looks like this:

  • The 1st article has 10 citations – exceeds 1 citation.
  • The 2nd article has 24 citations – exceeds 2 citations.
  • The 3rd article has 5 citations – exceeds 3 citations.
  • The 4th article falls short of 4 citations.

In this case, the journal has three articles that each have at least three citations. The fourth article doesn’t hit the mark, so the H-index stops at 3.

How H-index works
Journals classification

This metric can help researchers, professionals, and institutions decide if a journal publishes research that gets noticed and cited by the academic community. It’s not the full picture, but it’s a useful starting point for understanding the journal’s influence.

Impact Factor: Citation Average

The Impact Factor (IF) is a number that shows how often a journal’s articles are cited on average over the past two years. It helps you understand how much attention the journal’s research gets from other scholars and it also helps with journals classification.

How it works?

To calculate the IF, look at how many times articles from a journal were cited in the past two years. Then, you divide that by the total number of articles the journal published in those two years. This gives you an average citation count per article. 

Example:

Let’s say we want to figure out the IF for Journal A in 2023:

1. In 2021 and 2022, Journal A published 50 articles.  

2. In 2023, those articles were cited 200 times in total.  

3. You take the total citations (200) and divide it by the total number of articles (50):  

200 ÷ 50 = 4

So, Journal A has an Impact Factor of 4, meaning its articles were cited, on average, four times each. A higher Impact Factor often places journals higher in classification, but keep in mind that it’s not the full story. Some specialised journals may have lower Impact Factors even though they’re highly respected in their niche.

How impact factor work?
Journals classifications

SNIP: Fair Comparisons Across Fields

SNIP (Source Normalised Impact per Paper) is a valuable metric in journals classification because it goes one step further. It measures contextual citation impact and takes into account the fact that different research fields have different citation habits. For instance, medical papers often get cited a lot, while mathematics papers don’t, even if they’re equally important in their fields.

SNIP adjusts the average citations a journal receives based on these differences, making it easier to compare journals across disciplines.

Example:

  • Journal A publishes in a low-citation field like social sciences and averages 3 citations per article. Adjusted for its field, its SNIP might be 1.6.
  • Journal B publishes in a high-citation field like biomedicine and has an average of 8 citations per article. After adjustment, its SNIP might be 1.2.

SNIP makes sure journals in fields with fewer citations still get the recognition they deserve.

What it tells you:

SNIP is especially useful for journal classification because it levels the playing field between disciplines. A higher SNIP score suggests that a journal’s articles are cited more often than expected for its field. It’s a helpful tool for comparing journals, but it’s just one of many ways to evaluate a journal’s influence or importance.

Conclusion 

Metrics like Quartiles, H-Index, Impact Factor, and SNIP are essential tools for journals classification, helping researchers, librarians, and institutions rank journals and understand their influence. Each metric focuses on a different aspect of a journal’s impact.  

zaia
zendy

But no single number can tell the whole story. A journal might excel in one metric but be less prominent in another, or it might be vital to a specific audience despite modest scores. These tools are helpful guides, but the best journal for your research depends on your goals.

You might also like
Top 5 AI Ethical Issues that Can Impact Your Research Integrity
Jan 10, 20257 Mins ReadDiscover

Top 5 AI Ethical Issues that Can Impact Your Research Integrity

In a recent blog, we discussed responsible AI in research and why it matters. Now, we’ll discuss some AI ethical issues and what you should not be doing with AI in your research journey. This blog looks at common mistakes people make with AI in research, explains why they happen, and offers practical tips to avoid them. 1. Trusting AI Outputs Without Checking Them One big AI ethical issue is trusting everything AI tools generate without taking the time to verify it. AI models like ChatGPT can produce convincing answers, but they’re not always accurate. In research, this can lead to spreading incorrect information or drawing the wrong conclusions. Why It Happens: AI systems learn from existing data, which might include errors or biases. As a result, they can unintentionally repeat those issues. What You Can Do: Treat AI-generated content as a helpful draft, not the final word. Always double-check the information with reliable sources. 2. Using AI for Tasks That Require Human Judgment Relying on AI for decisions that need a human touch, like reviewing academic papers, is risky. These tasks often require context and empathy, which AI doesn’t have. Why It Happens: AI seems efficient, but it doesn’t understand the subtleties of human situations, leading to potential AI ethical issues in judgment and fairness. What You Can Do: Let AI assist with organizing or summarizing information, but make sure a person is involved in decisions that affect others. 3. Not Giving Credit to AI Tools Even when AI is used responsibly, failing to acknowledge its role can mislead readers about the originality of your work. Why It Happens: People might not think of AI as a source that needs to be cited, overlooking important AI ethical issues related to transparency and attribution. What You Can Do: Treat AI tools like any other resource. Check your institution’s or publisher’s guidelines for how to cite them properly. 4. Over-Reliance on AI for Creative Thinking AI can handle repetitive tasks, but depending on it too much can stifle human creativity. Research often involves brainstorming new ideas, which AI can’t do as well as people. Why It Happens: AI makes routine tasks more manageable, so letting it take over more complex ones is tempting. What You Can Do: Use AI to free up critical thinking and creative problem-solving time. Let it handle the busy work while you focus on the bigger picture to avoid these AI ethical issues. 5. Giving AI Access to Sensitive Data Allowing AI tools to access personal information without proper permission can pose serious security risks. Why It Happens: Some AI tools require access to data to function effectively, but their security measures might not be sufficient leading to potential AI ethical issues. What You Can Do: Limit the data AI tools can access. Use platforms with strong security features and comply with data protection regulations. Final Thoughts AI can be a valuable tool for researchers, but it’s not without its challenges. Many of these challenges stem from AI ethical issues that arise when AI is misused or misunderstood. By understanding these common mistakes and taking steps to address them, you can use AI responsibly and effectively. The key is to see AI as an assistant that complements human effort, not a replacement. .wp-block-image img { max-width: 80% !important; margin-left: auto !important; margin-right: auto !important; }

Speed Up Your Research With “Insights”
Dec 18, 20243 Mins ReadDiscover

Speed Up Your Research With “Insights”

'Insights', a brand-new feature designed to make your research experience faster, simpler, and more accessible. Insights gives you short, clear summaries of research papers, pulling out the most important information so you can understand the main points in just a few lines. Instead of reading through pages of dense content, you’ll get a quick overview that helps you decide if the paper is worth exploring further. Here’s how Insights can help: Save time by getting to the heart of a paper faster. Understand complex topics without feeling stuck. Focus on what matters and decide quickly what’s relevant to you. Why We Created Insights? We’ve heard from many of you that keeping up with research can feel like a never-ending task. There’s so much to read, and it’s hard to know where to start. That’s where 'Insights' comes in, to help you make the most of your time exploring the right research paper you are looking for. How Does It Work? Insights uses our AI to scan through a paper and extract key points. It focuses on sections like the introduction, methodology, results, and conclusion, so you can get a clear sense of what the paper is about. You don’t have to worry about missing anything important; it’s all laid out in a simple, easy-to-digest format. Head over to Zendy, search for what you are looking for, and see how Insights can give you a clearer overview in seconds, Check out Insights now! .wp-block-image img { max-width: 65% !important; margin-left: auto !important; margin-right: auto !important; }

Responsible AI In Research And Why It Matters
Dec 18, 20249 Mins ReadDiscover

Responsible AI In Research And Why It Matters

Artificial Intelligence (AI) is changing how we live, work, and learn. However, as AI continues to evolve, it is important to ensure it is developed and used responsibly. In this blog, we’ll explore what responsible AI means, why it is essential, and how tools like ZAIA, Zendy's AI assistant for researchers, implement these principles in the academic sector. What Is Responsible AI? Responsible AI, also known as ethical AI refers to building and using AI tools guided by key principles: Fairness Reliability Safety Privacy and Security Inclusiveness Transparency Accountability AI vs Responsible AI: Why Does Responsible AI Matter? Keep in mind that AI is not a human being. This means it lacks the ability to comprehend ethical standards or a sense of responsibility in the same way humans do. Therefore, ensuring these concepts are embedded in the development team before creating the tool is more important than building the tool itself. In 2016, Microsoft launched a Twitter chatbot called "Tay", a chatbot designed to entertain 18- to 24-year-olds in the US to explore the conversational capabilities of AI. Within just 16 hours, the tool's responses turned toxic, racist, and offensive due to being fed harmful and inappropriate content by some Twitter users. This led to the immediate shutdown of the project, followed by an official apology from the development team. In such cases, "Tay" lacked ethical guidelines to help it differentiate harmful content from appropriate content. For this reason, it is crucial to train AI tools on clear principles and ethical frameworks that enable them to produce more responsible outputs.The development process should also include designing robust monitoring systems to continuously review and update the databases' training, ensuring they remain free of harmful content. Overall, the more responsible the custodian is, the better the child’s behaviour will be. The Challenges And The Benefits of Responsible AI Responsible AI is not a "nice-to-have" feature, it’s a foundational set of principles that every AI-based tool must implement. Here's why: Fairness: By addressing biases, responsible AI ensures every output is relevant and fair for all society’s values. Trust: Transparency in how AI works builds trust among users. Accountability: Developers and organisations adhere to high standards, continuously improving AI tools and holding themselves accountable for their outcomes. This ensures that competition centers on what benefits communities rather than simply what generates more revenue. Implementing responsible AI comes with its share of challenges: Biased Data: AI systems often learn from historical data, which may carry biases. This can lead to skewed outcomes, like underrepresenting certain research areas or groups. Awareness Gaps: Not all developers and users understand the ethical implications of AI, making education and training critical. Time Constraints: AI tools are sometimes developed rapidly, bypassing essential ethical reviews, which increases the risk of errors. Responsible AI and ZAIA ZAIA, Zendy’s AI-powered assistant for researchers, is built with a responsible AI framework in mind. Our AI incorporates the six principles of responsible AI, fairness, reliability and safety, privacy and security, inclusiveness, transparency, and accountability, to meet the needs of students, researchers, and professionals in academia. Here’s how ZAIA addresses these challenges: Fairness: ZAIA ensures balanced and unbiased recommendations, analysing academic resources from diverse disciplines and publishers. Reliability and Safety: ZAIA’s trained model is rigorously tested to provide accurate and dependable insights, minimising errors in output. Transparency: ZAIA’s functionality is clear and user-friendly, helping researchers understand and trust its outcomes. Accountability: Regular updates improve ZAIA’s features, addressing user feedback and adapting to evolving academic needs. Conclusion Responsible AI is the foundation for building ethical and fair systems that benefit everyone. ZAIA is Zendy’s commitment to this principle, encouraging users to explore research responsibly and effectively. Whether you’re a student, researcher, or professional, ZAIA provides a reliable and ethical tool to enhance your academic journey. Discover ZAIA today. Together, let’s build a future where AI serves as a trusted partner in education and beyond. .wp-block-image img { max-width: 80% !important; margin-left: auto !important; margin-right: auto !important; }