z-logo
Discover

Dissecting the Key Ethical Considerations in Academic Research

calendarSep 19, 2023 |clock10 Mins Read

Within the ever-evolving sphere of academic and scientific research, ethical considerations play an imperative role. Research ethics are a set of principles that guide research, study, or experiment design and process; they serve as a code of conduct for scientists and researchers to abide by when collecting data from people. Transparently communicating how a study followed ethical guidelines is beneficial for both the researcher and participant; the guidelines ensure the participant’s right to privacy is protected, while also enhancing research validity and maintaining scientific integrity.

Why are ethics important in research?

Research ethics are established to ensure that the rights and welfare of research participants are appropriately protected, and all research designs involving living beings are reviewed by an ethics committee prior to the execution; this is done to ensure all ethical standards are met. 

Following ethics shows objectivity in research studies and experiments, the absence of harm combined with efficient result transparency gives the study credibility as well. Moreover, ethical research models and experiment designs attract more funding because research integrity and transparency are essential in gaining support to execute research. Finally, the standard ethics in research are also put in place to increase collaborative work across disciplines and institutions. 

Infographic depicting ethical concerns in academic research

 

  1. Voluntary Participation

When scouting and briefing volunteers for a research study, it is imperative to clarify that there are no negative consequences of withdrawing from the study. Voluntary participation is an ethical principle protected by international law and many scientific codes of conduct. 

 

  1. Informed Consent

All potential participants should receive and comprehend all the information about the study or experiment. The participant debriefing should include the following:

  • What is the study about?
  • Risks and benefits of participating
  • Timeline of study or experiment
  • Contact information and institutional approval number of the research supervisor
  • Right to withdraw at any given point in the study
  • The information withdrawal procedure

All of this information should be clearly mentioned and explained in a debriefing document which the participants should sign. It is important for all this information to be thoroughly comprehended by participants hence the material should be translated for those with limited English. 

 

  1. Anonymity

In a research study, anonymity can only be guaranteed by not collecting any personally identifiable information. An alternative to anonymising data is to generate data pseudonyms and replace personal information with these pseudonym identifiers instead. 

 

  1. Confidentiality

Participant confidentiality has to be maintained properly before, during and after the study. The information has to be stored safely during collection, analysis and utilisation. For example, all digitised files must be password protected and only approved researchers can access these databases. For cases in which confidentiality cannot be guaranteed, this must be thoroughly communicated in the debriefing phase. 

 

  1. Potential Harm

Any kind of harm during a study should be minimised. However, the researcher would need to consider all aspects of liability to debrief participants appropriately. 

  • Psychological harm: sensitive questions or tasks that can trigger negative emotions such as anxiety or shame
  • Social harm: participation can involve social risks, public humiliation or stigma
  • Physical harm: any pain or injury that can result from study procedures
  • Legal harm: reporting sensitive data could lead to legal risks and potential breaches of privacy

 

  1. Result Communication

Researchers should remember that good scientific research is honest and credible, as this keeps results as transparent as possible. There are 2 issues that can come from inaccurate result analysis and communication:

  • Plagiarism: the researcher should be vigilant to not commit plagiarism or self-plagiarism as this can benefit the researcher from presenting these findings and concepts as “new” 
  • Research misconduct: falsifying or fabricating data which is considered academic fraud

In conclusion, ethical considerations in academia contribute to responsible research. Embracing principles such as honesty, integrity, transparency, fairness, and respect not only ensures the credibility of academic work but also fosters a culture of trust and collaboration within the scholarly community. As we navigate the ever-evolving landscape of academia, it is imperative to remain vigilant in upholding these ethical standards. By doing so, we not only contribute to the advancement of knowledge but also serve as ethical role models for the next generation of scholars, shaping a brighter and more ethically grounded future for academia.

You might also like
Speed Up Your Research With “Insights”
Dec 18, 20243 Mins ReadDiscover

Speed Up Your Research With “Insights”

'Insights', a brand-new feature designed to make your research experience faster, simpler, and more accessible. Insights gives you short, clear summaries of research papers, pulling out the most important information so you can understand the main points in just a few lines. Instead of reading through pages of dense content, you’ll get a quick overview that helps you decide if the paper is worth exploring further. Here’s how Insights can help: Save time by getting to the heart of a paper faster. Understand complex topics without feeling stuck. Focus on what matters and decide quickly what’s relevant to you. Why We Created Insights? We’ve heard from many of you that keeping up with research can feel like a never-ending task. There’s so much to read, and it’s hard to know where to start. That’s where 'Insights' comes in, to help you make the most of your time exploring the right research paper you are looking for. How Does It Work? Insights uses our AI to scan through a paper and extract key points. It focuses on sections like the introduction, methodology, results, and conclusion, so you can get a clear sense of what the paper is about. You don’t have to worry about missing anything important; it’s all laid out in a simple, easy-to-digest format. Head over to Zendy, search for what you are looking for, and see how Insights can give you a clearer overview in seconds, Check out Insights now! .wp-block-image img { max-width: 65% !important; margin-left: auto !important; margin-right: auto !important; }

Responsible AI In Research And Why It Matters
Dec 18, 20249 Mins ReadDiscover

Responsible AI In Research And Why It Matters

Artificial Intelligence (AI) is changing how we live, work, and learn. However, as AI continues to evolve, it is important to ensure it is developed and used responsibly. In this blog, we’ll explore what responsible AI means, why it is essential, and how tools like ZAIA, Zendy's AI assistant for researchers, implement these principles in the academic sector. What Is Responsible AI? Responsible AI, also known as ethical AI refers to building and using AI tools guided by key principles: Fairness Reliability Safety Privacy and Security Inclusiveness Transparency Accountability AI vs Responsible AI: Why Does Responsible AI Matter? Keep in mind that AI is not a human being. This means it lacks the ability to comprehend ethical standards or a sense of responsibility in the same way humans do. Therefore, ensuring these concepts are embedded in the development team before creating the tool is more important than building the tool itself. In 2016, Microsoft launched a Twitter chatbot called "Tay", a chatbot designed to entertain 18- to 24-year-olds in the US to explore the conversational capabilities of AI. Within just 16 hours, the tool's responses turned toxic, racist, and offensive due to being fed harmful and inappropriate content by some Twitter users. This led to the immediate shutdown of the project, followed by an official apology from the development team. In such cases, "Tay" lacked ethical guidelines to help it differentiate harmful content from appropriate content. For this reason, it is crucial to train AI tools on clear principles and ethical frameworks that enable them to produce more responsible outputs.The development process should also include designing robust monitoring systems to continuously review and update the databases' training, ensuring they remain free of harmful content. Overall, the more responsible the custodian is, the better the child’s behaviour will be. The Challenges And The Benefits of Responsible AI Responsible AI is not a "nice-to-have" feature, it’s a foundational set of principles that every AI-based tool must implement. Here's why: Fairness: By addressing biases, responsible AI ensures every output is relevant and fair for all society’s values. Trust: Transparency in how AI works builds trust among users. Accountability: Developers and organisations adhere to high standards, continuously improving AI tools and holding themselves accountable for their outcomes. This ensures that competition centers on what benefits communities rather than simply what generates more revenue. Implementing responsible AI comes with its share of challenges: Biased Data: AI systems often learn from historical data, which may carry biases. This can lead to skewed outcomes, like underrepresenting certain research areas or groups. Awareness Gaps: Not all developers and users understand the ethical implications of AI, making education and training critical. Time Constraints: AI tools are sometimes developed rapidly, bypassing essential ethical reviews, which increases the risk of errors. Responsible AI and ZAIA ZAIA, Zendy’s AI-powered assistant for researchers, is built with a responsible AI framework in mind. Our AI incorporates the six principles of responsible AI, fairness, reliability and safety, privacy and security, inclusiveness, transparency, and accountability, to meet the needs of students, researchers, and professionals in academia. Here’s how ZAIA addresses these challenges: Fairness: ZAIA ensures balanced and unbiased recommendations, analysing academic resources from diverse disciplines and publishers. Reliability and Safety: ZAIA’s trained model is rigorously tested to provide accurate and dependable insights, minimising errors in output. Transparency: ZAIA’s functionality is clear and user-friendly, helping researchers understand and trust its outcomes. Accountability: Regular updates improve ZAIA’s features, addressing user feedback and adapting to evolving academic needs. Conclusion Responsible AI is the foundation for building ethical and fair systems that benefit everyone. ZAIA is Zendy’s commitment to this principle, encouraging users to explore research responsibly and effectively. Whether you’re a student, researcher, or professional, ZAIA provides a reliable and ethical tool to enhance your academic journey. Discover ZAIA today. Together, let’s build a future where AI serves as a trusted partner in education and beyond. .wp-block-image img { max-width: 65% !important; margin-left: auto !important; margin-right: auto !important; }

AI is Transforming Academic Research and Publishing – A Conversation with Kamran Kardan, CEO of Zendy
Dec 18, 20247 Mins ReadDiscover

AI is Transforming Academic Research and Publishing – A Conversation with Kamran Kardan, CEO of Zendy

AI's real potential lies not just in speeding up processes but also in helping users engage more deeply with academic content. Sabine Louët, CEO of SciencePOD sat down with Kamran Kardan, CEO of Zendy to discuss how technology, particularly AI, is reshaping the way researchers and independent scholars access critical information and how research is published. Removing Barriers in Academic Research When asked by Sabine Louët “what drove the creation of Zendy?” Kamran Kardan’s response was clear and purposeful: “Zendy was created to remove the barriers that restrict access to academic research”.He highlights the significant gap that exists for those outside privileged institutions, who often face prohibitive costs or limitations when trying to access essential research. Zendy, he says, aims to make academic content not only affordable but also widely accessible to researchers, students, and professionals globally.Accessing scientific literature remains a privilege reserved for those with institutional affiliations, leaving independent researchers or those from less-resourced regions at a disadvantage. As Kardan puts it, “Zendy is committed to levelling the playing field”, it offers a legitimate alternative to illicit means of accessing research. AI’s Role in Enhancing Research Accessibility AI has become a buzzword, but Kardan stresses the importance of AI in Zendy’s strategy, describing AI as an enabler rather than the focal point. Zendy, he explains, uses AI to enhance user experience by making vast amounts of data more navigable. One of the platform’s key AI-driven features is its summarisation tool, which allows users to quickly digest complex academic papers. With this tool, users can identify relevant content faster and focus their research efforts more effectively. A forthcoming feature called ‘findings’, will use AI to group related articles together, offering a comparative perspective on topics and highlighting differing viewpoints. This tool is designed to empower researchers to explore a topic from multiple angles without having to sift through unrelated material. Safeguarding Research Integrity in the Age of AI Another point of discussion between Sabine Louët and Kardan was the issue of integrity while also leveraging AI. Kardan acknowledges that this is critically important and explains that Zendy is built on principles of transparency and respect for intellectual property. Their AI tools do not merely extract data but give due credit to authors and publishers. In addition, the platform’s revenue-sharing model ensures that content creators benefit from the usage of their work, fostering a more sustainable and fair ecosystem for academic publishing. Kardan also addresses the issue of AI-generated inaccuracies, commonly referred to as “hallucinations”. He emphasises that Zendy's AI is structured to avoid these risks. If the AI does not have sufficient data to provide an answer, it refrains from making assumptions, thus maintaining a high standard of accuracy. AI: Not Just Speed, but Deeper Learning In Kardan’s view, AI's real potential lies not just in speeding up processes but also in helping users engage more deeply with academic content. The tools developed by Zendy are designed to simplify complex materials, making them more approachable for users across various disciplines, without compromising on the depth of information. Louët agrees and notes that these features, particularly AI-driven comparison and summarising tools, align with the needs of modern researchers who require both efficiency and reliability in handling academic content. Looking Ahead: The Future of AI in Research What does the future look like? Kardan foresees more AI advancements that will continue to transform research access, making it more affordable, transparent and equitable. The focus is not just on technology for technology’s sake but on providing meaningful solutions that directly address the challenges of the academic community. “AI’s role in academic publishing is still evolving”, says Kardan, “and Zendy is committed to using AI responsibly to enhance access to knowledge, not to replace human expertise”. .wp-block-image img { max-width: 65% !important; margin-left: auto !important; margin-right: auto !important; }