z-logo
Discover

Science Citation Index vs. Scopus: Which Database is Right for You?

calendarJan 22, 2025 |clock9 Mins Read

The Science Citation Index (SCI) and the Scopus database are two of the most widely used citation indexing systems in academic research. Researchers, institutions, and funding bodies rely on these databases to evaluate research impact, track citations, and facilitate collaborations. But how do they compare? And which one should you use for your research?

Scopus vs sci
Science citation index
Scopus database

Who Founded Science Citation Index?

The Science Citation Index (SCI) was introduced in 1964 by Dr. Eugene Garfield to track the flow of scientific ideas through citations. Started as a print-based resource, it later evolved into a digital database, now integrated into the Web of Science. Over the years, SCI made a huge impact on research careers, helping researchers assess the academic influence of scientific papers based on citation data.

A Brief History of the Scopus Database

In the early 2000s, competing databases featuring citation statistics were introduced, the most notable being Scopus, launched in 2004. The Scopus database, launched by Elsevier, provides a broader multidisciplinary citation index. Unlike the Science Citation Index, which traditionally focused on leading science journals, Scopus includes publications from a wider range of disciplines, including the social sciences, humanities, and technical fields.

What is the Difference Between Science Citation Index and Scopus Database

FeatureScience Citation IndexScopus
PublisherPart of Clarivate’s Web of Science platform.Managed by Elsevier.
Scope and SizeFocuses primarily on high-impact scientific journals.Covers a broader range of disciplines. (social sciences, humanities, and conference proceedings)
Regional RepresentationHas a more selective approach.Includes journals from diverse regions, including non-English publications.
Tools and MetricsFocuses on traditional citation counts, traditional citation counts and h-index.Offers advanced metrics like SCImago Journal Rank (SJR) and SNIP.
To know the difference between h-index, SNIP, and Impact Factor, read our recent blog about the Journal's Classification Systems.

Why is Science Citation Index important?

The Science Citation Index (SCI) is a critical database for evaluating scholarly reputation and research impact, particularly in scientific fields. Inclusion in SCI is often seen as a mark of prestige, as it only indexes top-tier, high-impact journals. This gives credibility to both the research published within these journals and the researchers themselves. Also, the Impact Factor derived from SCI data is one of the most respected metrics for assessing the significance of research articles and journals

How Science Citation Index Helps Researchers:

  • Tracking Research Impact
  • Finding Relevant Literature 
  • Facilitating Collaborations

Why is Scopus important?

Scopus is a key database for you as a researcher looking to stay on top of your field. It helps you track citation trends, see which studies are getting the most attention, and figure out where to focus your publication efforts. Researchers use it to get a clear picture of how their work fits into the broader conversation and which areas are generating the most interest. Scopus also includes a wider range of high impact journals and additional metrics like SJR and SNIP, which could be valuable for certain types of research, especially interdisciplinary or emerging fields.

How Scopus Database Supports Researchers:

  • Broader Coverage
  • Additional Metrics
  • Regional Inclusion

Should You use Scopus or Science Citation Index?

  • Use Scopus if you need broader coverage, especially across interdisciplinary fields, or if you're interested in tracking newer trends and conference papers.
  • Use SCI if you prioritise high-quality, curated content with a focus on traditional scholarly disciplines and need detailed citation metrics like the Impact Factor.

Conclusion

Both the Science Citation Index and the Scopus are essential citation databases for academic research, each with its strengths and limitations. The best choice depends on your research needs—whether you prioritise broad coverage (Scopus) or deep focus (SCI). As citation databases continue to evolve, the focus will remain on improving accuracy, accessibility, and fairness in academic evaluation.

You might also like
5 Tools Every Librarian Should Know in 2025
Oct 1, 20255 Mins ReadDiscover

5 Tools Every Librarian Should Know in 2025

The role of librarians has always been about connecting people with knowledge. But in 2025, with so much information floating around online, the challenge isn’t access, it’s sorting through the noise and finding what really matters. This is where AI for libraries is starting to make a difference. Here are five that are worth keeping in your back pocket this year. 1. Zendy Zendy is a one-stop AI-powered research library that blends open access with subscription-based resources. Instead of juggling multiple platforms, librarians can point students and researchers to one place where they’ll find academic articles, reports, and AI tools to help with research discovery and literature review. With its growing use of AI for libraries, Zendy makes it easier to summarise research, highlight key ideas, and support literature reviews without adding to the librarian’s workload. 2. LibGuides Still one of the most practical tools for librarians, LibGuides makes it easy to create tailored resource guides for courses, programs, or specific assignments. Whether you’re curating resources for first-year students or putting together a subject guide for advanced research, it helps librarians stay organised while keeping information accessible to learners. 3. OpenRefine Cleaning up messy data is nobody’s favourite job, but it’s a reality when working with bibliographic records or digital archives. OpenRefine is like a spreadsheet, but with superpowers, it can quickly detect duplicates, fix formatting issues, and make large datasets more manageable. For librarians working in cataloguing or digital collections, it saves hours of tedious work. 4. PressReader Library patrons aren’t just looking for academic content; they often want newspapers, magazines, and general reading material too. PressReader gives libraries a simple way to provide access to thousands of publications from around the world. It’s especially valuable in public libraries or institutions with international communities. 5. OCLC WorldShare Managing collections and sharing resources across institutions is a constant task. OCLC WorldShare helps libraries handle cataloguing, interlibrary loans, and metadata management. It’s not flashy, but it makes collaboration between libraries smoother and ensures that resources don’t sit unused when another community could benefit from them. Final thought The tools above aren’t just about technology, they’re about making everyday library work more practical. Whether it’s curating resources with Zendy, cleaning data with OpenRefine, or sharing collections through WorldShare, these platforms help librarians do what they do best: guide people toward knowledge that matters. .wp-block-image img { max-width: 85% !important; margin-left: auto !important; margin-right: auto !important; }

Balancing AI Efficiency with Human Expertise in Libraries
Oct 1, 20256 Mins ReadDiscover

Balancing AI Efficiency with Human Expertise in Libraries

AI in libraries is making some tasks quicker and less repetitive. However, even with these advances, there’s something irreplaceable about a librarian’s judgment and care. The real question isn’t whether AI will take over libraries, it’s how both AI and librarians can work side by side. How AI Helps in Libraries According to Clarivate Pulse of the Library 2025 survey, among 2,000 academic library professionals globally, many said they don’t have enough time or budget to learn new tools or skills, a challenge made even harder as global digital content is projected to double every two years. Here’s where AI tools for librarians prove useful: Cataloguing: AI can scan metadata and suggest subject tags in minutes. Search: Smarter search systems help students and researchers find relevant materials without digging through dozens of irrelevant results. Day-to-day tasks: Think overdue notices, compiling basic reading lists, or identifying key sources and trends to support literature reviews. This is where library automation with AI comes in handy. Instead of replacing people, these tools free up time. A librarian who doesn’t have to spend hours sorting through data can focus on supporting students, curating collections, analysing usage statistics to make informed decisions or tracking resource usage against budgets. Where Human Expertise Still Matters AI is fast, but it’s not thoughtful. A student asking, “I’m researching migration patterns in 19th-century Europe, where do I start?” gets much more from a librarian than from a search algorithm. Librarians bring context, empathy, and critical thinking that machines can’t replicate. This is why human-AI collaboration in libraries makes sense. AI takes care of the routine. Humans bring the nuance. Together, they cover ground neither could manage alone. Finding the Balance So how do libraries get this balance right? A few ideas: Think of AI as a helper – not a replacement for staff. Invest in training – librarians need to feel confident using AI tools and knowing when not to rely on them. Keep the focus on people – the goal isn’t efficiency for its own sake, it’s about better service for students, researchers, and communities. Final Thoughts By using AI to handle routine administrative tasks like cataloguing, managing records, or tracking resource usage, librarians free up time to focus on the part of the job that drew them to this profession in the first place: supporting researchers and students, curating meaningful collections, and fostering learning. Combining the efficiency of AI in libraries with the expertise of librarians creates a future where technology supports the human side of education. .wp-block-image img { max-width: 85% !important; margin-left: auto !important; margin-right: auto !important; }

How AI in Higher Education Is Helping Libraries Support Research
Oct 1, 20255 Mins ReadDiscover

How AI in Higher Education Is Helping Libraries Support Research

Libraries have always been at the centre of knowledge in higher education. Beyond curating collections, librarians guide researchers and students through complex databases, teach research skills, and help faculty navigate publishing requirements. They also play a key role in managing institutional resources, preserving archives, and ensuring equitable access to information. These days, libraries are facing new challenges: huge amounts of digital content, tighter budgets, and more demand for remote access. In this environment, AI in higher education is starting to make a real difference. How AI Makes Life Easier for Librarians Improving Discovery AI-powered search tools don’t just look for keywords, they can understand the context of a query. That means students and researchers can find related work they might otherwise miss. It’s like having an extra set of eyes to point them toward useful sources. Helping with Curation AI can go through thousands of articles and highlight the ones most relevant to a specific course, project, or research topic. For example, a librarian preparing a reading list for a history class can save hours by letting AI suggest the most relevant papers or reports. Supporting Remote Access Students, researchers and faculty aren’t always on campus. AI can summarise long articles, translate content, or adjust resources for different reading levels. This makes it easier for people to get the information they need, even from home. Working Within Budgets Subscriptions remain a major expense for libraries, and ongoing budget cuts are forcing many academic institutions to make difficult choices about which resources to keep or cancel. For example, recent surveys show that around 73% of UK higher education libraries are making budget cuts this year, sometimes slashing up to 30% of their overall budgets, and collectively spending £51 million less than the previous year. This trend is not limited to the UK, universities in the U.S. and elsewhere are also reducing library funding, which has dropped by nearly 20% per student over recent years. Even top institutions like Princeton have cut library hours and student staffing to save on costs. Subscriptions can be expensive, and libraries often have to make tough choices. AI tools that work across large collections help libraries give students and researchers more access without adding extra subscriptions. Trusted Content Still Matters AI is helpful, but the resources behind it are just as important. Librarians care about trusted, peer-reviewed, and varied sources. Librarians and AI: A Partnership AI isn’t replacing librarians. Instead, it supports the work they already do. Librarians are the ones who guide researchers, check the quality of sources, and teach information skills. By using AI tools, librarians can make research easier for students, researchers and faculty, and they can help their institutions make the most of the resources they have. Final Thoughts AI in higher education is making it easier for libraries to support students and faculty, but librarians are still at the centre of the process. By using AI tools alongside strong content collections, libraries can save time, offer more resources, and help researchers find exactly what they need. With the right AI support, research becomes easier to navigate and more accessible without overcomplicating the process. .wp-block-image img { max-width: 85% !important; margin-left: auto !important; margin-right: auto !important; }

Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom