z-logo
open-access-imgOpen Access
A kernel random matrix-based approach for sparse PCA
Author(s) -
Mohamed El Amine Seddik,
Mohamed Tamaazousti,
Romain Couillet
Publication year - 2019
Publication title -
hal (le centre pour la communication scientifique directe)
Language(s) - English
Resource type - Conference proceedings
Subject(s) - kernel principal component analysis , principal component analysis , sparse pca , kernel (algebra) , mathematics , random matrix , covariance matrix , differentiable function , sparse matrix , pattern recognition (psychology) , matrix (chemical analysis) , gaussian , algorithm , computer science , combinatorics , artificial intelligence , kernel method , support vector machine , eigenvalues and eigenvectors , statistics , pure mathematics , physics , quantum mechanics , materials science , composite material

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom