z-logo
open-access-imgOpen Access
HYDRAULIC STABILITY AND OVERTOPPING PERFORMANCE OF A NEW TYPE OF REGULAR PLACED ARMOR UNIT
Author(s) -
Bas Reedijk,
Tamara Eggeling,
Pieter Bakker,
Robert Jacobs,
Markus Muttray
Publication year - 2018
Publication title -
proceedings of conference on coastal engineering/proceedings of ... conference on coastal engineering
Language(s) - English
Resource type - Journals
eISSN - 2156-1028
pISSN - 0589-087X
DOI - 10.9753/icce.v36.papers.111
Subject(s) - breakwater , armour , geotechnical engineering , wave height , rubble , geology , interlocking , surface finish , seabed , significant wave height , wave loading , layer (electronics) , structural engineering , engineering , materials science , wind wave , composite material , oceanography , submarine pipeline , mechanical engineering
The XblocPlus is a new type of interlocking single layer armour units that is placed with uniform orientation. This is novel and different from all other single layer, interlocking armouring systems. The hydraulic stability of the XblocPlus breakwater armour unit was tested in 2D and 3D hydraulic model tests. Wave overtopping tests were performed to determine the roughness coefficients of the EurOtop overtopping formula for the XblocPlus. Model tests on a rubble mound breakwater with XblocPlus armour included 2D tests with a 1:30 seabed slope and with 1:2 and 3:4 breakwater slopes and 3D model tests with a flat seabed and with a 3:4 breakwater slope. Wave heights up to 150% of the design wave height were tested in the 2D tests and up to 200% with wave directions 0° to 60° in the 3D tests. No armour unit displacements were observed in 2D tests with 1:2 slope. In the 2D tests with 3:4 slope one armour unit was displaced when the wave height reached 159% of the design wave height. No damage to the XblocPlus armour layer was observed in the 3D tests. A roughness coefficient of 0.45 was deduced from overtopping tests with wave heights of 60% to 100% of the design wave height. The model test results indicate little or no influence of wave steepness on XblocPlus stability and no adverse influence of wave obliquity while the seabed slope in front of the breakwater may have some impact on the XblocPlus armour layer stability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here