
MODELING TURBULENT BORE PROPAGATION IN THE SURF ZONE
Author(s) -
David R. Basco,
Ib A. Svendsen
Publication year - 1984
Publication title -
proceedings of conference on coastal engineering/proceedings of ... conference on coastal engineering
Language(s) - English
Resource type - Journals
eISSN - 2156-1028
pISSN - 0589-087X
DOI - 10.9753/icce.v19.7
Subject(s) - turbulence , mechanics , momentum (technical analysis) , surf zone , nonlinear system , physics , energy flux , distribution (mathematics) , classical mechanics , front (military) , geology , meteorology , mathematical analysis , mathematics , finance , quantum mechanics , astronomy , economics
Initial efforts to numerically simulate surf zone waves by using a modified form of the nonlinear shallow water equations are described. Turbulence generated at the front of the moving bore-like wave spreads vertically downward to significantly alter the velocity profile and hence the horizontal momentum flux. This influence of turbulence is incorporated into the momentum balance equation through a momentum correction coefficient, a which is prescribed based in part upon the theoretical a(x) distribution beneath stationary hydraulic jumps. The numerical results show that with a suitably chosen a(x) distribution, the equations not only dissipate energy as the waves propagate, but also that the wave shape stabilizes as a realistic profile rather than progressively steepening as when the nonlinear shallow water equations are employed. Further research is needed to theoretically determine the appropriate a(x,t) distribution.