
WAVE CLIMATE ANALYSIS FOR ENGINEERING PURPOSE
Author(s) -
Hans H. Dette,
Alfred Führböter
Publication year - 1976
Publication title -
proceedings of conference on coastal engineering/proceedings of ... conference on coastal engineering
Language(s) - English
Resource type - Journals
eISSN - 2156-1028
pISSN - 0589-087X
DOI - 10.9753/icce.v15.2
Subject(s) - hindcast , shore , wind wave , wave height , submarine pipeline , geology , significant wave height , climatology , offshore wind power , wave setup , meteorology , oceanography , geography , wind power , wave propagation , physics , engineering , electrical engineering , mechanical wave , longitudinal wave , quantum mechanics
The North Sea (Fig. 1) is known as a random sea with depths in the southern part between 40 m and 100 m so that in contrary to the Atlantic and Pacific coastlines deep sea wave conditions do not exist. After four years of comprehensive wave measurements in the offshore area of the Island of Sylt near the Danish border a general analysis of the wave climate in that region was possible. In this paper results and suggestions will be presented under the aspect of replacing qualitative judgements by quantitative statements which are derived from the knowledge of the adjacent wave climate. Because the wave action varies from year to year a general time unit is not advisable for the evaluation of shore processes; therefore the time scale should be substituted by the integral of incoming wave energy occurring after a certain time. The investigated method of expressing the total energy of one season or one year in the electrical unit Kilowatthour (kWh) per meter (m) width of shoreline could prove in future as a feasible way of classifying the irregular seasonal and yearly wave intensities. It is further shown that wave measurements over a period of several years can be sufficient for the investigation of correlations between the wind velocities occurring from all directions and the resulting wave heights. In case of satisfying correlation factors it will then be possible to carry out feedback operations for periods from which only records of wind velocities and directions are available and even to hindcast the wave heights for certain not yet measured wind velocities.