z-logo
open-access-imgOpen Access
Metallic Composition Analysis of Crude Petroleum from Some Oil Fields in Ghana
Author(s) -
Robert C. Wilson,
Calvin Kwesi Gafrey,
George Kofi Amoako,
Benjamin Anderson
Publication year - 2021
Publication title -
physical science international journal
Language(s) - English
Resource type - Journals
ISSN - 2348-0130
DOI - 10.9734/psij/2021/v25i530256
Subject(s) - vanadium , petroleum , scandium , petrochemical , geology , nickel , sedimentary rock , geochemistry , oil refinery , oil field , mineralogy , environmental chemistry , metallurgy , chemistry , environmental science , materials science , petroleum engineering , environmental engineering , organic chemistry , paleontology
Qualitative and quantitative analyses of chemical elements in crude petroleum using energy-dispersive X-ray fluorescence spectroscopic technique has attracted the attention of scientific world because it is fast, cheap, non-destructive and assurance in quality compared to other methods. Metallic element characterisation of crude petroleum is important in the petrochemical industry because it determines rock reservoir properties, the technology needed for extraction and refinery process, hence an exciting field that calls for research. X-ray fluorescence method was used for metallic composition analysis of four rundown crude petroleum samples (SB-2, SB-4, TB-2 and TB-1) from three oil fields (Saltpond, TEN and Jubilee). It was conducted at the National Nuclear Research Institute of Ghana. Analysis of the four samples concluded that oil field maturity decreases orderly from Saltpond, Jubilee and TEN. Vanadium-nickel ratios for each crude petroleum sample was less than 0.5, indicating that both Saltpond and Tano sedimentary rocks are of marine organic origin. Higher concentration levels of rare earth metal elements (scandium and yttrium) in the Saltpond sedimentary basin compared to Tano sedimentary rock suggest seismic effect of McCarthy Hills on Saltpond Basin. The strong negative correlation between the vanadium-nickel ratio (predictor) and scandium concentration (dependent) among the three oil fields implies that scandium concentration can equally be used to characterise the oil fields just as the vanadium-nickel ratios.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here