z-logo
open-access-imgOpen Access
A Review on Impact of Glyphosate on Development of Cancer
Author(s) -
Monisha Prasad,
U. Vidhya Rekha,
Ponnulakshmi Rajagopal,
Durairaj Sekar,
Selvaraj Jayaraman
Publication year - 2021
Publication title -
journal of pharmaceutical research international
Language(s) - English
Resource type - Journals
ISSN - 2456-9119
DOI - 10.9734/jpri/2021/v33i62a35551
Subject(s) - glyphosate , pesticide , biology , carcinogen , shikimate pathway , cancer , microbiology and biotechnology , toxicology , biochemistry , amino acid , aromatic amino acids , agronomy , genetics
Pesticides are a vast mixture of compounds used to control pests like plants, moulds, and insects. In agriculture, non-agricultural vegetation management, and crop desiccant harvesting aid, chemicals from every major functional family of pesticides, such as insecticides, herbicides, fungicides, and fumigants, were frequently used. Herbicides are one of the most effective tools for farmers to obtain optimal crop yields when used correctly. Glyphosate (N-(phosphonomethyl) glycine) is a broad-spectrum weed killer that is used all over the world in agriculture and forestry. Glyphosate's herbicidal activity in plants is to disrupt the shikimic acid pathway's generation of branched-chain amino acids by preventing the binding of phosphoenolpyruvate (PEP) to the enzyme 5-enolpyruvylshikimate 3-phosphate synthase. This causes a deficiency in aromatic amino acid synthesis and, as a result, weeds mortality. Glyphosate exposure through food, drinking water, wind, water erosion, and other environmental pathways has been linked to human health issues as a carcinogen, mutagen, and reproductive toxicity. Glyphosate has a wide range of tumorigenic effects in biological systems, and epidemiological evidence suggests that glyphosate use on crops is linked to a wide range of cancers, including liver cancer, breast cancer, thyroid cancer, pancreatic cancer, kidney cancer, bladder cancer, and myeloid cancer. The shikimate pathway enzymes, intermediates, and derivative amino acids, which have been associated to genotoxicity and carcinogenicity, are thought to have a role in most cancer pathologies. This review summarises glyphosate's function in cancer pathology, including the ability of the glyphosate circuit to induce cancer and implications for future therapeutic methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here