z-logo
open-access-imgOpen Access
Design and In silico Studies of 2,5-Disubstituted 1,2,4-Triazole and 1,3,4-Thiadiazole Derivatives as Pteridine Reductase 1 Inhibitors
Author(s) -
Shraddha Phadke,
Devender Pathak,
Rakesh R. Somani
Publication year - 2021
Publication title -
journal of pharmaceutical research international
Language(s) - English
Resource type - Journals
ISSN - 2456-9119
DOI - 10.9734/jpri/2021/v33i29a31575
Subject(s) - docking (animal) , in silico , stereochemistry , chemistry , triazole , lipinski's rule of five , protein data bank (rcsb pdb) , enzyme , autodock , reductase , combinatorial chemistry , 1,2,3 triazole , biochemistry , organic chemistry , medicine , nursing , gene
Aims: Design and in silico studies of 2,5-disubstituted triazole and thiadiazole derivatives as Pteridine Reductase 1 inhibitors. With a view to develop effective agents against Leishmaniasis, 2-substituted-5-[(1H-benzimidazol-2yl) methyl] azole derivatives (A1-A12) were designed against the target enzyme Pteridine reductase 1. Methodology: The series was designed by targeting Pteridine reductase 1 which is an enzyme responsible for folate and pterin metabolism. Based on thorough study of the enzyme structure and structural features of ligands required for optimum interaction with the enzyme, a series of 12 compounds consisting of 2,5-disubstituted 1,2,4-triazole and 1,3,4-thiadiazole derivatives was designed. In silico studies were carried out which included docking studies (using V Life software) to understand binding of the compounds with enzyme PTR1, ADMET studies, drug likeness studies for physicochemical properties and bioactivity studies to understand the possible mechanism of action of the compounds. These studies were undertaken using online softwares, molinspiration and admetSAR web servers. Results: Compounds A10 and A12 gave the best docking scores of -59.9765 and -60.4373 respectively that were close to dihydrobiopterin (original substrate). All the compounds complied with Lipinski’s rule of five. Most of the compounds displayed favorable ADMET properties. Conclusion: The 2,5-disubstituted 1,2,4-triazole and 1,3,4-thiadiazole derivatives exhibited good binding affinity for PTR1 enzyme (PDB code: 1E92). The docking scores indicated that enzyme binding may be governed by the nature and size of the substituents on the azole ring. The compounds display well-defined drug-like and pharmacokinetic properties based on Lipinski’s rule of five with additional physicochemical and ADMET parameters. Bioactivity studies suggested the possible drug mechanism as enzyme inhibition. Hence, this study provides evidence for consideration of valuable ligands in 2,5-disubstituted 1,2,4-triazole and 1,3,4-thiadiazole derivatives as potential pteridine reductase 1 inhibitor and further in vitro and in vivo investigations may prove its therapeutic potential.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here