
Development and Validation of Simple, Rapid and Sensitive High- Performance Liquid Chromatographic Method for the Determination of Butenafine Hydrochloride
Author(s) -
Mohammad Javed Ansari,
Mohammed Muqtader Ahmed,
Md. Khalid Anwer,
Mohammed F. Aldawsari,
Saad M. Al Shahrani,
Rizwan Ahmad
Publication year - 2020
Publication title -
journal of pharmaceutical research international
Language(s) - English
Resource type - Journals
ISSN - 2456-9119
DOI - 10.9734/jpri/2020/v32i2930892
Subject(s) - chromatography , high performance liquid chromatography , chemistry , analytical chemistry (journal) , volumetric flow rate , quantum mechanics , physics
Aims: The current paper reports a simple, rapid, sensitive, accurate, and precise Reverse-phase high performance liquid chromatography (RP-HPLC) method with wide range of estimation to determine butenafine hydrochloride in nanosponges. This method has been validated as per ICH norms.
Study Design: Experimental design with influence of variables such as mobile phase composition, flow rate, temperature and wavelength on the chromatographic peaks.
Place and Duration of Study: Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia between Jan 2020 and March 2020.
Methodology: Separation was achieved by utilizing the most commonly used reverse phase column (C-18, 5 μm, 150 mm x 4.6 mm) set at 30ºC and quantified by UV detection at 280 nm after isocratic elution from a mobile phase (70:30 v/v of methanol: phosphate buffer pH 3.0) flowing at 1 ml/min.
Results: A sharp and symmetrical peak was observed at 4.08 ± 0.01 minutes. The low variation in peak area and retention time (1.12% and 0.29%, respectively) and a high number of theoretical plates (>2000) indicated this method’s efficiency and suitability. The least square linear regression analysis (Y = 9265.5 X + 1961.4) showed excellent correlation (r2 = 0.999 ± 0.0003) between concentration and peak area of butenafine hydrochloride through a wide concentration range of 1–50 µg/ml. The limits of detection and quantification (LOD and LOQ) were 0.18 µg/ml and 0.57 µg/ml, respectively. The assay or determinations were accurate, precise and reproducible with mean accuracy and mean relative standard deviation of precision of 101.53 ± 0.43% and 0.51 ± 0.11% respectively.
Conclusion: The developed RP-HPLC method was simple, sensitive, reproducible with wide range of estimation of butenafine hydrochloride in the nanosponges. The proposed method could be used for the analysis of butenafine hydrochloride in the conventional pharmaceutical formulations such as tablets, syrup, creams including novel formulations such as nanoparticles, nanosponges, nanoemulsions. The proposed method overcomes the specificity, sensitivity and reproducibility related issues of ultraviolet-visible spectroscopy.