
Investigating the Effect of Metal Inert Gas Welding Parameters on AA10119 Mild Steel Quality by Taguchi Method
Author(s) -
Jephthah A. Ikimi,
Aigbovbiosa A. Momodu,
Erhuvwu Totore
Publication year - 2021
Publication title -
journal of engineering research and reports
Language(s) - English
Resource type - Journals
ISSN - 2582-2926
DOI - 10.9734/jerr/2021/v20i617327
Subject(s) - welding , taguchi methods , materials science , gas metal arc welding , inert gas , heat affected zone , electric resistance welding , ultimate tensile strength , metallurgy , laser beam welding , composite material , electrogas welding , mechanical engineering , engineering
In welding, the quality of welded joints is greatly influenced by the welding process parameters. Thus, in order to achieve a good weld quality, there is exigency to select the right welding process parameters. The focus of this study is to investigate the effect of Metal Inert Gas (MIG) welding process parameters; welding current, welding voltage and welding speed on the tensile strength of mild steel AA10119 welded plates. The experiment was designed using Taguchi’s L9 orthogonal array with three levels. Kaierda MIG MAG Inverter CO2 Welder Model E-180 welding machine was used to conduct the experiments with three repetitions. From the analysis carried out by applying Taguchi’s method, the result shows that the welding speed and welding current have the most significant influence on tensile strength of the weld and an optimum parameter setting of A3B2C2 was suggested; welding current 240 A, welding voltage 25 V and welding speed 0.010 m/s. The mean tensile strength at this optimal setting A3B2C2 was predicted to be 442 N/mm2.