z-logo
open-access-imgOpen Access
Analysis of Ethylene Glycol (EG)-based ((Cu-Al2O3), (Cu-TiO2), (TiO2-Al2O3)) Hybrid Nanofluids for Optimal Car Radiator Coolant
Author(s) -
J. A. Okello,
Winifred N. Mutuku,
Anselm O. Oyem
Publication year - 2020
Publication title -
journal of engineering research and reports
Language(s) - English
Resource type - Journals
ISSN - 2582-2926
DOI - 10.9734/jerr/2020/v17i217186
Subject(s) - nanofluid , radiator (engine cooling) , coolant , materials science , nusselt number , mechanics , ethylene glycol , mechanical engineering , thermodynamics , heat transfer , engineering , physics , chemical engineering , reynolds number , turbulence
Coolants are vital in any automotive since they manage the heat in the internal combustion of the engines by preventing corrosion in the cooling system as well as assist in eradicating the engine’s waste heat. This paper examines three different types of ethylene glycol-based hybrid nanofluids ((Cu-Al2O3), (Cu-TiO2), (TiO2-Al2O3)) to establish their cooling capabilities for industrial cooling applications. The vertical flow of these hybrid nanofluids combination through a semi-infinite convectively heated flat plate mimicking the flow of coolant in car radiator is modeled. The governing non-linear partial differential equations of fluid flow are transformed into a system of coupled non-linear ordinary differential equations using a suitable similarity transformation variables and the numerical solution executed using the shooting technique together with the fourth-order Runge-Kutta-Fehlberg integration scheme. The numerical simulation is executed using MATLAB and results are displayed graphically. The effects of pertinent parameters on velocity, temperature, skin friction, and local Nusselt number are investigated. From the study (Cu-Al2O3  hybrid nanocoolant leads to a rapid decrease in temperature at the boundary layer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here