
Prediction for Modified Topp Leone-Chen Distribution Based on Progressive Type-II Censoring Scheme
Author(s) -
G. R. AL-Dayian,
A. A. EL-Helbawy,
Neama Taher Al-Sayed,
E. M. Swielum
Publication year - 2021
Publication title -
journal of advances in mathematics and computer science
Language(s) - English
Resource type - Journals
ISSN - 2456-9968
DOI - 10.9734/jamcs/2021/v36i330345
Subject(s) - censoring (clinical trials) , mathematics , bayesian probability , statistics , conjugate prior , order statistic , bayes' theorem
Prediction of future events on the basis of the past and present information is a fundamental problem of statistics, arising in many contexts and producing varied solutions. The predictor can be either a point or an interval predictor. This paper focuses on predicting the future observations from the modified Topp-Leone Chen distribution based on progressive Type-II censored scheme. The two-sample prediction is applied to obtain the maximum likelihood, Bayesian and E-Bayesian prediction (point and interval) for future order statistics. The Bayesian and E-Bayesian predictors are considered based on two different loss functions, the balanced squared error loss function; as a symmetric loss function and balanced linear exponential loss function; as an asymmetric loss function. The predictors are obtained based on conjugate gamma prior and uniform hyperprior distributions. A numerical example is provided to illustrate the theoretical results and an application using real data sets are used to demonstrate how the results can be used in practice.