z-logo
open-access-imgOpen Access
Data Mining Classification Algorithms for Analyzing Soil Data
Author(s) -
Kazheen Ismael Taher,
Adnan Mohsin Abdulazeez,
Dilovan Asaad Zebari
Publication year - 2021
Publication title -
asian journal of research in computer science
Language(s) - English
Resource type - Journals
ISSN - 2581-8260
DOI - 10.9734/ajrcos/2021/v8i230196
Subject(s) - random forest , naive bayes classifier , decision tree , machine learning , statistical classification , artificial intelligence , classifier (uml) , computer science , soil classification , algorithm , data mining , support vector machine , soil water , soil science , environmental science
Rapid changes are occurring in our global ecosystem, and stresses on human well-being, such as climate regulation and food production, are increasing, soil is a critical component of agriculture. The project aims to use Data Mining (DM) classification techniques to predict soil data. Analysis DM classification strategies such as k-Nearest-Neighbors (k-NN), Random-Forest (RF), Decision-Tree (DT) and Naïve-Bayes (NB) are used to predict soil type. These classifier algorithms are used to extract information from soil data. The main purpose of using these classifiers is to find the optimal machine learning classifier in the soil classification. in this paper we are applying some algorithms of DM and machine learning on the data set that we collected by using Weka program, then we compare the experimental result with other papers that worked like our work.  According to the experimental results, the highest accuracy is k-NN has of 84 % when compared to the NB (69.23%), DT and RF (53.85 %). As a result, it outperforms the other classifiers. The findings imply that k-NN could be useful for accurate soil type classification in the agricultural domain.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here