
Thermodynamic and Adsorption Study of the Corrosion Inhibition of Mild Steel by Aframomum chrysanthum Extract in 0.1 M Hydrochloric Acid Solution
Author(s) -
Omotola M. Fayomi,
Habibat Faith Chahul,
David Chukwuebuka Ike,
Gloria Ihuoma Ndukwe,
Ikpum M. Phoebe
Publication year - 2021
Publication title -
asian journal of applied chemistry research
Language(s) - English
Resource type - Journals
ISSN - 2582-0273
DOI - 10.9734/ajacr/2021/v8i430200
Subject(s) - physisorption , adsorption , enthalpy , endothermic process , chemistry , hydrochloric acid , corrosion , gibbs free energy , methanol , nuclear chemistry , inorganic chemistry , thermodynamics , organic chemistry , physics
The study reports the corrosion inhibition activity of methanol extract of Aframomum chrysanthum on mild steel in 0.1 M HCl, using gravimetry analysis. The weight loss of the mild steels was observed to increase with increasing immersion time. The inhibition efficiency (%IE) was also observed to have increased with increasing concentrations of the inhibitor but decreases with increasing immersion time. The effect of temperature change on the inhibition efficiency was also studied and it was observed that for every increase in temperature there was a corresponding increase in weight loss and decreased in the %IE. The highest values of %IE; 46.66, 56.66, 60.0, 80.0 & 93.33 was observed at temperature 303 K for 0.2, 0.4, 0.6, 0.8 & 1.0 g/L respectively. Activation energy (Ea) values and the enthalpy values reviews that the adsorption process followed a physisorption’s mechanism. Change in enthalpy (ΔH) and entropy change (ΔS) of the reaction was positive indicating the endothermic nature and the spontaneity of the reaction. Three adsorption isotherms were tried on the inhibition process and only the Temkin isotherm gave the best fit with R2 value of 0.903, describing the best adsorption mechanism. The adsorption equilibrium constants Kads were positive, indicating the feasibility of the adsorption of the inhibitor to the metal surface. Gibb’s Free Energy change of adsorption, ΔGads are negative indicating that the adsorption of the extract of Aframomum chrysanthum on mild steel surface is spontaneous. The values of ΔGads shows physisorption mechanism. All confirming that Aframomumm chrysanthum extract is a good corrosion inhibitor on mild steel in 0.1 M HCl.