z-logo
open-access-imgOpen Access
Multiparametric Rational Solutions of Order N to the KPI Equation and the Explicit Case of Order 3
Author(s) -
Pierre Gaillard
Publication year - 2021
Publication title -
archives of current research international
Language(s) - English
Resource type - Journals
ISSN - 2454-7077
DOI - 10.9734/acri/2021/v21i630253
Subject(s) - quotient , order (exchange) , mathematics , degree (music) , polynomial , plane (geometry) , polynomial and rational function modeling , modulus , mathematical analysis , pure mathematics , combinatorics , discrete mathematics , geometry , physics , finance , acoustics , economics
We present multiparametric rational solutions to the Kadomtsev-Petviashvili equation (KPI). These solutions of order N depend on 2N − 2 real parameters. Explicit expressions of the solutions at order 3 are given. They can be expressed as a quotient of a polynomial of degree 2N(N +1)−2 in x, y and t by a polynomial of degree 2N(N +1) in x, y and t, depending on 2N − 2 real parameters. We study the patterns of their modulus in the (x,y) plane for different values of time t and parameters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom