z-logo
open-access-imgOpen Access
Optimization of mechanical properties of cellular lightweight concrete with alkali treated banana fiber
Author(s) -
Mohammed Hassan Nensok,
Md Azree Othuman Mydin,
Hanizam Awang
Publication year - 2021
Publication title -
revista de la construcción
Language(s) - English
Resource type - Journals
eISSN - 0718-915X
pISSN - 0717-7925
DOI - 10.7764/rdlc.20.3.491
Subject(s) - materials science , ultimate tensile strength , kenaf , composite material , coir , flexural strength , retting , compressive strength , sisal , aramid , polypropylene , absorption of water , natural fiber , fiber , durability , pulp and paper industry , engineering
Recent advancements in construction materials development have involved the utilization of plant-based natural fibers such as kenaf, sisal, coir and banana to replace conventional fibers such as carbon, steel, polypropylene and aramid. However, the main issue with using these fibers is the alkaline cement matrix's durability and compatibility due to high water absorption. Hence, this research focuses on the use of alkali treatment of banana fibers to enhance the mechanical properties of cellular lightweight concrete (CLC). Banana fibers were subjected to 2%, 4%, 6%, 8%, and 10% NaOH treatment before being included in 1200 kg/m3 density CLC. Plain CLC and untreated fiber composites (0% NaOH treatment) were used as the control. Results from the study indicate that compared to the untreated fibre composites and plain control CLC at 28 days, compressive, flexural and splitting tensile strengths increased simultaneously with 6% NaOH fibre treatment to peaks of 40.6% and 59.8%, 63.8% and 117.4%, and 77.4% and 157.8% respectively. The 6% NaOH treatment of BF tremendously improved the mechanical characteristics of single fibers and BFRCLC composites. It is therefore concluded that 6% NaOH treatment of banana fibre was the optimum percentage alkali treatment for use in CLC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom