z-logo
open-access-imgOpen Access
miR-15a-5p regulates myocardial fibrosis in atrial fibrillation by targeting Smad7
Author(s) -
Dan He,
Zhongbao Ruan,
Guixian Song,
Gecai Chen,
Fei Wang,
MeiXiang Wang,
Mao-kun Yuan,
Li Zhu
Publication year - 2021
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.12686
Subject(s) - myocardial fibrosis , luciferase , fibrosis , western blot , viability assay , atrial fibrillation , transfection , chemistry , cell growth , small interfering rna , transforming growth factor , hydroxyproline , blot , cell , microbiology and biotechnology , medicine , biology , pathology , biochemistry , gene
Background At present, there is no effective treatment for myocardial fibrosis in atrial fibrillation (AF). It is reported that miR-15a-5p is abnormally expressed in AF patients but its specific role remains unclear. This study aims to investigate the effect of miR-15a-5p in myocardial fibrosis. Methods Left atrial appendage (LAA) tissues were collected from AF and non-AF patients. In lipopolysaccharide (LPS) stimulated H9C2 cells, miR-15a-5p mimic, inhibitor, pcDNA3.1-Smad7 and small interfering RNA-Smad7 (siRNA-Smad7) were respectively transfected to up-regulate or down-regulate the intracellular expression levels of miR-15a-5p and Smad7. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot (WB) were used to determine the expression levels of miR-15a-5p, Smad7, transforming growth factor β1 (TGF-β1) and collagen I. Cell counting kit-8 (CCK-8) and ethylene deoxyuridine (EdU) were used to determine cell viability and proliferation capacity, respectively. Dual-luciferase was used to detect whether miR-15a-5p interacted with Smad7, hydroxyproline (HYP) and Hematoxylin-Eosin (HE) staining were used to detect tissue fibrosis. Results The expression levels of miR-15a-5p, TGF-β1 and collagen I were up-regulated, while Smad7 was down-regulated in AF tissues and LPS-stimulated cells. MiR-15a-5p mimic can inhibit the expression of Smad7, and the dual-luciferase experiment confirmed their interaction. MiR-15a-5p inhibitor or pcDNA3.1-Smad7 can inhibit LPS-induced fibrosis and cell proliferation, while siRNA-Smad7 can reverse the changes caused by miR-15a-5p inhibitor. Conclusion We combined clinical studies with LPS-stimulated H9C2 cell model to validate the role of miR-15a-5p in the regulation of Smad7 and fibrosis. Taken together, the miR-15a-5p/Smad7 pathway might be a potential target for AF therapy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom