z-logo
open-access-imgOpen Access
Anti-inflammatory and antiaging properties of chlorogenic acid on UV-induced fibroblast cell
Author(s) -
Ermi Girsang,
Chrismis N. Ginting,
I Nyoman Ehrich Lister,
Kamila Yashfa Gunawan,
Wahyu Widowati
Publication year - 2021
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.11419
Subject(s) - oxidative stress , reactive oxygen species , fibroblast , apoptosis , inflammation , dermal fibroblast , tumor necrosis factor alpha , chlorogenic acid , microbiology and biotechnology , chemistry , gene expression , antioxidant , cell , biology , immunology , biochemistry , gene , in vitro , food science
Background Skin aging is the most common dermatological problem caused by intrinsic and extrinsic factor, such as exposure to (ultraviolet) UV rays. Chlorogenic acid (CA) is a phenolic compound which is known for its antioxidant properties against oxidative stress. Objective This study investigates the antiaging and anti-inflammatory properties of CA on UV-induced skin fibroblast cells. Methods Anti-inflammatory properties of CA were assessed by measuring inflammatory-related proteins IL-1β and TNF-α, while antiaging properties of CA were assessed by measuring reactive oxygen species (ROS), apoptosis, live and necrotic cells, and COL-3 gene expression level. Results Treating UV-induced skin fibroblast cells with CA decreased the level of ROS, IL-1β, TNF-α, apoptotic cells, and necrotic cells and increased live cells and COL-3 gene expression. Conclusion CA has the potential as the protective compound against inflammation and aging by decreasing the level ROS, pro-inflammatory cytokines IL-1β and TNF-α, apoptotic cells, and necrotic cells and by increasing live cells and COL-3 gene expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom