Continuous bubble streams for controlling marine biofouling on static artificial structures
Author(s) -
Grant A. Hopkins,
Fletcher Gilbertson,
Oliver Floerl,
Paula Casanovas,
Matt Pine,
Patrick Cahill
Publication year - 2021
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.11323
Subject(s) - biofouling , environmental science , fouling , streams , marine engineering , bubble , settlement (finance) , computer science , engineering , biology , computer network , genetics , membrane , world wide web , parallel computing , payment
Biofouling accumulation is not proactively managed on most marine static artificial structures (SAS) due to the lack of effective options presently available. We describe a series of laboratory and field trials that examine the efficacy of continuous bubble streams in maintaining SAS free of macroscopic biofouling and demonstrate that this treatment approach is effective on surface types commonly used in the marine environment. At least two mechanisms were shown to be at play: the disruption of settlement created by the bubble stream, and the scouring of recently settled larvae through shear stress. Field trials conducted over a one-year period identified fouling on diffusers as a major issue to long-term treatment applications. Field measurements suggest that noise associated with surface mounted air blowers and sub-surface diffusers will be highly localised and of low environmental risk. Future studies should aim to develop and test systems at an operational scale.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom