z-logo
open-access-imgOpen Access
Comprehensive analysis of AHL gene family and their expression under drought stress and ABA treatment in Populus trichocarpa
Author(s) -
Hanzeng Wang,
Xue Leng,
Jiawei Yang,
Mengqiu Zhang,
Minzhen Zeng,
Xuemei Xu,
Fude Wang,
Chenghao Li
Publication year - 2021
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.10932
Subject(s) - populus trichocarpa , biology , gene , genetics , gene family , phylogenetic tree , transcription factor , gene expression , histone , drought tolerance , genome , botany
The AT-hook motif nuclear-localized (AHL) family is a plant transcription factor family, which plays an important role in growth and development and stress responses. We identified and analyzed 37 AHL genes in poplar ( Populus trichocarpa ). Phylogenetic analysis classified the PtrAHL members into three subfamilies based on their conserved domain. All PtrAHL paralogous pairs evolved under purifying selection. The promoter analysis revealed the presence of stress-related and phytohormone-related cis -elements of the PtrAHL genes. Our analysis of the tissue-specific expression pattern of PtrAHL genes indicated their significance in tissue and organ development. Network-based prediction suggested that PtrAHL genes may interact with histone deacetylases (HDAC) and participate in the development of organs, such as roots. Drought negatively impacts plant growth and development. ABA is produced under osmotic stress condition, and it takes an important part in the stress response and tolerance of plants. Real-time quantitative PCR (qRT-PCR) showed that PtrAHL genes were induced by drought stress and ABA treatment. These insights into the expression of PtrAHL genes under stress provide a basis for PtrAHL gene functional analysis. Our study will help develop new breeding strategies to improve drought tolerance in poplar.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom