Heparin-binding protein as a novel biomarker for sepsis-related acute kidney injury
Author(s) -
Sahra Pajenda,
Andreja Figurek,
Ludwig Wagner,
Daniela Gerges,
Alice Schmidt,
Harald Herkner,
Wolfgang Winnicki
Publication year - 2020
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.10122
Subject(s) - sepsis , acute kidney injury , medicine , heparin , biomarker , organ dysfunction , granzyme a , pathogenesis , immunology , gastroenterology , granzyme b , immune system , biology , cd8 , biochemistry
Background Sepsis-related acute kidney injury (AKI) is associated with high morbidity and mortality among patients. Underlying pathomechanisms include capillary leakage and fluid loss into the interstitial tissue and constant exposure to pathogens results in activation of inflammatory cascades, organ dysfunction and subsequently organ damage. Methods To identify novel factors that trigger sepsis-related acute kidney injury, plasma levels of Granzyme A, as representative of a lymphocyte-derived protease, and heparin-binding protein as indicator for neutrophil-derived mediators, were investigated retrospectively in 60 sepsis patients. Results While no association was found between plasma levels of lymphocyte-derived Granzyme A and the incidence of sepsis-related AKI, sepsis patients with AKI had significantly higher plasma levels of heparin-binding protein compared to those without AKI. This applies both to heparin-binding protein peak values (43.30 ± 23.34 vs. 30.25 ± 15.63 pg/mL; p = 0.005) as well as mean values (27.93 ± 14.39 vs. 22.02 ± 7.65 pg/mL; p = 0.021). Furthermore, a heparin-binding protein cut-off value of 23.89 pg/mL was established for AKI diagnosis. Conclusion This study identifies the neutrophil-derived heparin-binding protein as a valuable new biomarker for AKI in sepsis. Beyond the diagnostic perspective, this offers prospect for further research on pathogenesis of AKI and novel therapeutic approaches.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom