Genomic signatures of globally enhanced gene duplicate accumulation in the megadiverse higher Diptera fueling intralocus sexual conflict resolution
Author(s) -
Riyue Bao,
Markus Friedrich
Publication year - 2020
Publication title -
peerj
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.927
H-Index - 70
ISSN - 2167-8359
DOI - 10.7717/peerj.10012
Subject(s) - biology , lineage (genetic) , evolutionary biology , gene duplication , phylogenetic tree , phylogenomics , drosophila melanogaster , insect , gene , genetics , ecology , clade
Gene duplication is an important source of evolutionary innovation. To explore the relative impact of gene duplication during the diversification of major insect model system lineages, we performed a comparative analysis of lineage-specific gene duplications in the fruit fly Drosophila melanogaster (Diptera: Brachycera), the mosquito Anopheles gambi ae (Diptera: Culicomorpha), the red flour beetle Tribolium castaneum (Coleoptera), and the honeybee Apis mellifera (Hymenoptera). Focusing on close to 6,000 insect core gene families containing maximally six paralogs, we detected a conspicuously higher number of lineage-specific duplications in Drosophila (689) compared to Anopheles (315), Tribolium (386), and Apis (223). Based on analyses of sequence divergence, phylogenetic distribution, and gene ontology information, we present evidence that an increased background rate of gene duplicate accumulation played an exceptional role during the diversification of the higher Diptera (Brachycera), in part by providing enriched opportunities for intralocus sexual conflict resolution, which may have boosted speciation rates during the early radiation of the megadiverse brachyceran subclade Schizophora.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom