z-logo
open-access-imgOpen Access
GaborNet: investigating the importance of color space, scale and orientation for image classification
Author(s) -
Richard Rimiru,
Judy Gateri,
Micheal W. Kimwele
Publication year - 2022
Publication title -
peerj. computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 24
ISSN - 2376-5992
DOI - 10.7717/peerj-cs.890
Subject(s) - orientation (vector space) , artificial intelligence , scale (ratio) , scale space , computer science , space (punctuation) , computer vision , color space , pattern recognition (psychology) , image (mathematics) , image processing , geography , mathematics , cartography , geometry , operating system
Content-Based Image Retrieval (CBIR) is the cornerstone of today’s image retrieval systems. The most distinctive retrieval approach used, involves the submission of an image-based query whereby the system is used in the extraction of visual characteristics like the shape, color, and texture from the images. Examination of the characteristics is done for ensuring the searching and retrieval of proportional images from the image database. Majority of the datasets utilized for retrieval lean towards to comprise colored images. The colored images are regarded as in RGB (Red, Green, Blue) form. Most colored images use the RGB image for classifying the images. The research presents the transformation of RGB to other color spaces, extraction of features using different color spaces techniques, Gabor filter and use Convolutional Neural Networks for retrieval to find the most efficient combination. The model is also known as Gabor Convolution Network. Even though the notion of the Gabor filter being induced in CNN has been suggested earlier, this work introduces an entirely different and very simple Gabor-based CNN which produces high recognition efficiency. In this paper, Gabor Convolutional Networks (GCNs or GaborNet), with different color spaces are used to examine which combination is efficient to retrieve natural images. An extensive experiment using Cifar 10 dataset was made and comparison of simple CNN, ResNet 50 and GCN model was also made. The models were evaluated through a several statistical analysis based on accuracy, precision, recall, F-Score, area under the curve (AUC), and receiving operating characteristic (ROC) curve. The results shows GaborNet model effectively retrieve images with 99.68% of AUC and 99.09% of Recall. The results also shows different images are effectively retrieved using different color space. Therefore research concluded it is very significance to transform images to different color space and use GaborNet for effective retrieval.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here