z-logo
open-access-imgOpen Access
DNN-based multi-output model for predicting soccer team tactics
Author(s) -
Geon Ju Lee,
Jason J. Jung
Publication year - 2022
Publication title -
peerj. computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 24
ISSN - 2376-5992
DOI - 10.7717/peerj-cs.853
Subject(s) - computer science , artificial intelligence , machine learning , perceptron , cluster analysis , support vector machine , artificial neural network , feature selection , outcome (game theory) , multilayer perceptron , data mining , mathematics , mathematical economics
In modern sports, strategy and tactics are important in determining the game outcome. However, many coaches still base their game tactics on experience and intuition. The aim of this study is to predict tactics such as formations, game styles, and game outcome based on soccer dataset. In this paper, we propose to use Deep Neural Networks (DNN) based on Multi-Layer Perceptron (MLP) and feature engineering to predict the soccer tactics of teams. Previous works adopt simple machine learning techniques, such as Support Vector Machine (SVM) and decision tree, to analyze soccer dataset. However, these often have limitations in predicting tactics using soccer dataset. In this study, we use feature selection, clustering techniques for the segmented positions and Multi-Output model for Soccer (MOS) based on DNN, wide inputs and residual connections. Feature selection selects important features among features of soccer player dataset. Each position is segmented by applying clustering to the selected features. The segmented positions and game appearance dataset are used as training dataset for the proposed model. Our model predicts the core of soccer tactics: formation, game style and game outcome. And, we use wide inputs and embedding layers to learn sparse, specific rules of soccer dataset, and use residual connections to learn additional information. MLP layers help the model to generalize features of soccer dataset. Experimental results demonstrate the superiority of the proposed model, which obtain significant improvements comparing to baseline models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here