
Deepfake video detection: YOLO-Face convolution recurrent approach
Author(s) -
Aya Abdelsalam Ismail,
Marwa S. Elpeltagy,
Mervat S. Zaki,
Kamal A. ElDahshan
Publication year - 2021
Publication title -
peerj. computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.806
H-Index - 24
ISSN - 2376-5992
DOI - 10.7717/peerj-cs.730
Subject(s) - computer science , convolution (computer science) , artificial intelligence , frame (networking) , face (sociological concept) , convolutional neural network , precision and recall , pattern recognition (psychology) , detector , computer vision , artificial neural network , telecommunications , social science , sociology
Recently, the deepfake techniques for swapping faces have been spreading, allowing easy creation of hyper-realistic fake videos. Detecting the authenticity of a video has become increasingly critical because of the potential negative impact on the world. Here, a new project is introduced; You Only Look Once Convolution Recurrent Neural Networks (YOLO-CRNNs), to detect deepfake videos. The YOLO-Face detector detects face regions from each frame in the video, whereas a fine-tuned EfficientNet-B5 is used to extract the spatial features of these faces. These features are fed as a batch of input sequences into a Bidirectional Long Short-Term Memory (Bi-LSTM), to extract the temporal features. The new scheme is then evaluated on a new large-scale dataset; CelebDF-FaceForencics++ (c23), based on a combination of two popular datasets; FaceForencies++ (c23) and Celeb-DF. It achieves an Area Under the Receiver Operating Characteristic Curve (AUROC) 89.35% score, 89.38% accuracy, 83.15% recall, 85.55% precision, and 84.33% F1-measure for pasting data approach. The experimental analysis approves the superiority of the proposed method compared to the state-of-the-art methods.