
Association Between Body Composition and Vertical Jump Performance in Female Collegiate Volleyball Athletes
Author(s) -
Lindsey Legg,
Megan Rush,
Jordan Rush,
Stephanie M. McCoy,
James Garner,
Paul T. Donahue
Publication year - 2021
Publication title -
international journal of kinesiology and sports science
Language(s) - English
Resource type - Journals
ISSN - 2202-946X
DOI - 10.7575/aiac.ijkss.v.9n.4p.43
Subject(s) - lean body mass , vertical jump , fat mass , squat , athletes , jump , body fat percentage , mathematics , countermovement , zoology , composition (language) , population , physical therapy , medicine , body mass index , body weight , physics , biology , linguistics , philosophy , environmental health , quantum mechanics
Background of Study: Associations between measures of body composition and vertical jump height have previously been established using a range of instrumentation and prediction equations. Limited data has presented using gold standard measurements for both variables Objective: This investigation sought to examination the relationship between total body and lower extremity measures of body composition and vertical jump performance using gold standard measurements within an athletic population. Methods: Using a cross-sectional, correlational research design fourteen collegiate female volleyball athletes completed body composition, three countermovement jumps (CMJ) and three squat jumps (SJ) analysis using DXA and force platforms. Results: High to very high positive relationships were seen between total body lean (p < 0.001) and fat mass (p < 0.05), lower extremity lean and fat mass (p < 0.01), and CMJ force and power. High negative relationships were present between total body fat percentage(p < 0.05), total fat mass (p < 0.01) and CMJ jump height. Relationships between all body composition variables and SJ performance tended to be weaker, with the exception of total body lean mass (p < 0.05), lower extremity lean mass, and power output (p < 0.01). Conclusions: These findings support much of the previous literature in that increases of mass have subsequent increases in force and power production; however caution should be taken will increases in mass coming from fat or lean tissue.