z-logo
open-access-imgOpen Access
Evaluation of atherosclerotic lesions in cholesterol-fed mice during treatment with paclitaxel in lipid nanoparticles: a magnetic resonance imaging study
Author(s) -
D. Aline,
Ning Hua,
C. Raul,
Anthony E. James
Publication year - 2017
Publication title -
journal of biomedical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.617
H-Index - 31
eISSN - 2352-4685
pISSN - 1674-8301
DOI - 10.7555/jbr.31.20160123
Subject(s) - ldl receptor , paclitaxel , in vivo , medicine , cholesterol , saline , stenosis , aorta , endocrinology , intraperitoneal injection , magnetic resonance imaging , lipoprotein , pharmacology , chemotherapy , biology , radiology , microbiology and biotechnology
Cholesterol-core nanoparticles (LDE) have been shown to be recognized by low-density lipoprotein receptors (LDLR) after administration; therefore, LDE is an ideal vehicle to deliver drug with targeting property. Paclitaxel, when incorporated into LDE, promotes atherosclerosis regression with reduced drug toxicity in rabbits through LDLR. Here, we tested whether LDE-paclitaxel could still be effective in reducing diet-induced atherosclerosis in a mouse model without LDLR. Nineteen LDLR knockout male mice were fed 1% cholesterol for 12 weeks. Then, 12 animals received 4-weekly intraperitoneal LDE-paclitaxel (4 mg/kg) while 7 controls received saline solution. On week 12 and 16, in vivo MRI of the aortic roots was performed. Aorta macroscopy was made after euthanasia. Reduction of atherosclerotic lesions was observed. LDE-paclitaxel treatment resulted in reduction of wall area (14%) and stenosis (22%) by MRI and 33% by macroscopy. Thus, LDE-paclitaxel may produce pharmacological effects through LDE uptake by mechanisms other than LDLR.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom