
Reseach progress of ferroelectric polymer nanocomposites with high energy storage density
Author(s) -
Zhonghui Shen,
Yanda Jiang,
Bao-Wen Li,
Xin Zhang
Publication year - 2020
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.69.20201209
Subject(s) - materials science , ferroelectricity , dielectric , energy storage , ferroelectric polymers , nanocomposite , capacitor , polymer nanocomposite , polymer , supercapacitor , ceramic , nanotechnology , composite material , optoelectronics , voltage , capacitance , electrical engineering , power (physics) , electrode , chemistry , physics , engineering , quantum mechanics
Electrostatic capacitors based on dielectrics delivering an ultrahigh power density, low loss and high operating voltage, are widely used in energy storage devices for modern electronic and electrical systems. Dielectric polymers, especially ferroelectric polymers, are preferable for an energy storage medium in film capacitors due to their superiority in ultrahigh breakdown strength, low mass density, flexibility, and easy fabrication process. Ferroelectric polymer nanocomposites combining the advantageous properties of ferroelectric polymer matrix and high dielectric constant of ceramic fillers, show great potential applications in achieving superior energy storage performances and have aroused substantial academic interest. This review focuses on the recent research progress of high-energy-density ferroelectric polymer nanocomposites. First, the synthesis and properties of PVDF-based ferroelectric polymers are introduced. Second, the effects of nanofillers, composite structures and interfaces on the dielectric and energy storage properties of ferroelectric polymer nanocomposites are summarized. Third, the underline mechanism of dielectric and energy storage behaviors in ferroelectric nanocomposites are discussed in the aspect of phase-field simulation. Last, the existing challenges and future directions of ferroelectric polymer nanocomposites with high energy storage density are summarized and prospected.