z-logo
open-access-imgOpen Access
Optical properties of topological semimetals
Author(s) -
Bing Xu,
Qiu Zi-Yang,
Yang Run,
Y. M. Dai,
Xianggang Qiu
Publication year - 2019
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.68.20191510
Subject(s) - semimetal , physics , angle resolved photoemission spectroscopy , dirac (video compression format) , weyl semimetal , condensed matter physics , position and momentum space , photoemission spectroscopy , fermi level , fermi energy , electronic band structure , topology (electrical circuits) , band gap , quantum mechanics , electronic structure , spectral line , electron , mathematics , combinatorics , neutrino
Topological semimetal represents a novel quantum phase of matter, which exhibits a variety of fascinating quantum phenomena. This class of materials not only have potential applications in electronic devices, but also represent one of the hottest topics in the field of quantum materials. According to the band structure of these materials in the three-dimensional momentum space, topological semimetals can be classified into Dirac semimetals, Weyl semimetals and nodal-line semimetals. Extensive studies on these materials have been conducted using various techniques. For example, angle-resolved photoemission spectroscopy (ARPES) has directly observed the Fermi arc that connects two Weyl points with opposite chiralities in the surface states of Weyl semimetals; the Dirac points, Weyl points as well as the Dirac nodal line in the bulk states have also been revealed by soft X-ray ARPES; the observation of negative magnetoresistance in transport measurements has been taken as the evidence for the chiral anomaly in Weyl and Dirac semimetals; the chirality of the Weyl fermions have been detected by measuring the photocurrent in response of circularly polarized light; in addition, strong second harmonic generation and THz emission have been observed, indicating strong non-linear effects of Weyl semimetals. Infrared spectroscopy is a bulk-sensitive technique, which not only covers a very broad energy range (meV to several eV), but also has very high energy resolution (dozens of µeV). Investigations into the optical response of these materials not only help understand the physics of the topological phase and explore novel quantum phenomena, but also pave the way for future studies and applications in optics. In this article, we introduce the optical studies on several topological semimetals, including Dirac, Weyl and nodal-line semimetals.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here