z-logo
open-access-imgOpen Access
Theoretical study of laser-cooled SH<sup>–</sup> anion
Author(s) -
Mingjie Wan,
Song Li,
Chengguo Jin,
Huafeng Luo
Publication year - 2019
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.68.20182039
Subject(s) - mathematics , combinatorics , physics , stereochemistry , chemistry
The potential energy curves, dipole moments, and transition dipole moments for the \begin{document}${{\rm{X}}^1}{\Sigma ^ + }$\end{document}, \begin{document}${{\rm{a}}^3}\Pi $\end{document}, and \begin{document}${{\rm{A}}^1}\Pi $\end{document}electronic state of sulfur hydride anion (SH – ) are calculated by using the multi-reference configuration interaction method plus Davidson corrections (MRCI+ Q ) with all-electron basis set. The scalar relativistic corrections and core-valence correlations are also considered. In the CASSCF calculations, H(1s) and S(3s3p4s) shells are chosen as active space, and the rest orbitals S(1s2s2p) as closed-shell. In the MRCI+ Q calculations, the S(1s2s2p) shells are used for the core-valence correlation. Spectroscopic parameters, Einstein spontaneous emission coefficient, Franck-Condon factors, and spontaneous radiative lifetimes are obtained by using Le Roy’s LEVEL8.0 program. The calculated spectroscopic parameters are in good agreement with available experimental data and theoretical values. Spin-orbit coupling (SOC) effects are evaluated with Breit-Pauli operators at the MRCI+ Q level. Transition dipole moments (TDMs) for the \begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}, \begin{document}${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}, \begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}, \begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _{{0^ + }}}$\end{document}and \begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _1}$\end{document}transitions are also calculated. The strength for the \begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}is the strongest in these five transitions, the value of TDM at R e is –1.3636 D. We find that the value of TDM for the \begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}transition at R e is 0.5269 D. Therefore, this transition must be taken into account to build the scheme of laser-cooled SH – anion. Highly diagonally distributed Franck-Condon factor f 00 for the \begin{document}${{\rm{a}}^3}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}\begin{document}$ (\nu '' = 0)$\end{document}transition is 0.9990 and the value for the \begin{document}${{\rm{A}}^1}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\nu '' = 0)$\end{document}transition is 0.9999. Spontaneous radiative lifetimes of \begin{document}$\tau \left( {{{\rm{a}}^3}{\Pi _1}} \right)= 1.472 \;{\text{μ}}{\rm{s}}$\end{document}and \begin{document}$\tau \left( {{{\rm{A}}^1}{\Pi _1}} \right)=0.188 \;{\text{μ}}{\rm{s}}$\end{document}are obtained, which can ensure that laser cools SH – anion rapidly. To drive the \begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}and \begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}transitions, just one laser wavelength is required. The wavelengths are 492.27 nm and 478.57 nm for two transitions, respectively. Notably, the influences of the intervening states \begin{document}${{\rm{a}}^3}{\Pi _1}$\end{document}and \begin{document}${{\rm{a}}^3}{\Pi _{{0^{\rm{ + $\end{document}on the \begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {X^1}\Sigma _{{0^ + }}^ + $\end{document}transition are small enough to implement a laser cooling project. A spin-forbidden transition and a three-electronic-level transition optical scheme of laser-cooled SH – anion are constructed, respectively. In addition, the Doppler temperatures and recoil temperatures for the \begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}and \begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}transitions of laser-cooled SH – anion are also obtained, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom