
Single-ion qubit with coherence time exceeding 10 minutes
Author(s) -
Wang Ye,
Jingning Zhang,
Kihwan Kim
Publication year - 2019
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.68.20181729
Subject(s) - qubit , coherence time , quantum computer , dynamical decoupling , physics , coherence (philosophical gambling strategy) , quantum , flux qubit , quantum mechanics , quantum cryptography , trapped ion quantum computer , phase qubit , quantum information , quantum error correction , atomic physics
Quantum memory device capable of storing quantum information for a long period of time is one of the fundamental ingredients to realize large-scale quantum computation and quantum communication. Comparing with other quantum computation platforms, one of the advantages of the trapped-ion system is the long intrinsic coherence time. Before our work, the longest single-qubit coherence time in trapped-ion systems has been achieved to be less than 1 minute. It is discovered that the main limitation for the coherence time is the motional mode heating and the environment noise that includes the contributions from the magnetic field fluctuation and the phase noise of the microwaves. In a hybrid trapping system simultaneously trapping 171 Yb + and 138 Ba + ions, single-qubit quantum memories with coherence time longer than 10 minutes can be realized by applying sympathetic cooling and dynamical decoupling. This technique may have some value as the building blocks for quantum cryptography protocols and hybrid quantum computation platforms.