z-logo
open-access-imgOpen Access
Influence of leading-edge curvature on excited unsteady cross-flow vortices in three-dimensional boundary-layer
Author(s) -
Changgen Lu,
Laifa Shen
Publication year - 2018
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.67.20181343
Subject(s) - boundary layer , laminar flow , physics , vortex , discretization , external flow , curvature , turbulence , mechanics , classical mechanics , geometry , mathematical analysis , mathematics
Three-dimensional boundary-layer receptivity is the first stage of the laminar-turbulent transition in a three-dimensional boundary layer, and also a key issue for predicting and controlling the laminar-turbulent transition in the three-dimensional boundary layer. At a high turbulence level, the three-dimensional boundary-layer instability in the transition is caused mainly by the unsteady cross-flow vortices. And the leading-edge curvature has a significant influence on three-dimensional boundary-layer receptivity. In view of this, the direct numerical simulation is utilized in this paper to study the mechanism of receptivity to exciting unsteady cross-flow vortices in the three-dimensional (swept-plate) boundary layer with various elliptic leading edges. In order to solve the Navier-Stokes equation numerically, a modified fourth-order Runge-Kutta scheme is introduced for discretization in time; high-order compact finite difference schemes are utilized for discretization in the x-and y-direction; and Fourier transform is used in the z-direction. The pressure Helmholtz equation is solved by a fourth-order iterative scheme. Additionally, the numerical calculation is performed in the curvilinear coordinate system via Jaccobi transform. And the elliptic equation technique is used to gene-rate the body-fitted mesh. The effect of leading-edge curvature on the propagation speed and direction, distribution and receptivity coefficient of the excited unsteady cross-flow vortex wave packet, and the amplitude, dispersion relation and growth rate of the extracted unsteady cross-flow vortex are revealed. In addition, the inner link among the receptivity to unsteady cross-flow vortex, intensity, and direction of free-stream turbulence is established. Furthermore, the receptivity to anisotropic free-stream turbulence is also analyzed in detail. The numerical results indicate that the more intense receptivity to the unsteady cross-flow vortex wave packets is triggered with a smaller leading-edge curvature; whereas, the less intense receptivity is triggered with a greater leading-edge curvature. The receptivity to the unsteady cross-flow vortex wave packets in different curvatures are also found to vary with the angle of free-stream turbulence. Moreover, the anisotropic degree of free-stream turbulence can affect the excitation of the unsteady cross-flow vortex obviously. Through the above study, a further step can be taken to understand the prediction and control of laminar-turbulent transition in the three-dimensional boundary layer and also improve the theory of the hydrodynamic stability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here