z-logo
open-access-imgOpen Access
Electron correlation effects in even Rydberg series converging to 4f13(2F7/2o)6s(7/2, 1/2)4o and 4f13(2F7/2o)6s(7/2, 1/2)3o of thulium atom
Author(s) -
Dian-Cheng Zhang,
Ying Zhang,
Xiaokang Li,
Feng-Dong Jia,
Ruohong Li,
Zhi-Ping Zhong
Publication year - 2018
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.67.20180797
Subject(s) - rydberg formula , physics , atomic physics , rydberg atom , rydberg matter , hydrogen spectral series , rydberg constant , series (stratigraphy) , rydberg state , quantum defect , ion , quantum mechanics , ionization , paleontology , biology
In the frame work of multi-channel quantum defect theory (MQDT), the energy levels of three even Rydberg series 4f13(2F7/2o)6s(7/2, 1/2)4onp3/2, 4f13(2F7/2o)6s(7/2, 1/2)3onp3/2 and 4f13(2F7/2o)6s(7/2, 1/2)3onp1/2 converging to 4f13(2F7/2o)6s(7/2, 1/2)4o or 4f13(2F7/2o)6s(7/2, 1/2)3o of thulium atom are calculated by relativistic multi-channel theory. Compared with the experimental data from National Institute of Standards and Technology (NIST), the theoretical result shows two different types of electron-correlation effects: 1)the interaction between two Rydberg series results in energy shifts for these Rydberg series; 2)an isolated perturbed state is embedded in the energy range of a Rydberg series and interacts with the whole series, and breaks the regularity of the Rydberg series, and quantum defects show a large jump around the perturbed state. More specifically, by comparing the present calculated quantum defects with the experimental data, we reassign two Rydberg series: 1)4f13(2F7/2o)6s(7/2, 1/2)4onp3/2 Rydberg series from NIST is reassigned as 4f13(2F7/2o)6s(7/2, 1/2)4onf5/2, J=(5/2)+, 4f13(2F7/2o)6s(7/2, 1/2)4onf5/2, J=(7/2)+ and/or 4f13(2F7/2o)6s(7/2, 1/2)4onp1/2, J=(9/2)+ Rydberg series, and the difference between experimental and calculated quantum defects is generally better than 0.1; 2)4f13(2F7/2o)6s(7/2, 1/2)3onp3/2 Rydberg series from NIST is reassigned as 4f13(2F7/2o)6s(7/2, 1/2)3onf7/2, J=(5/2)+, 4f13(2F7/2o)6s(7/2, 1/2)3onf7/2, J=(7/2)+ and/or 4f13(2F7/2o)6s(7/2, 1/2)3onf5/2, 7/2, J=(9/2)+ Rydberg series, and the difference between experimental and calculated quantum defects is generally better than 0.05. As for the 4f13(2F7/2o)6s(7/2, 1/2)3onp1/2 Rydberg series from NIST, we find there is a perturbed state at about 49900 cm-1, and assign the perturbed state as 4f13(3F4)6 d5/26s2, J=7/2 and the total angular momentum for the Rydberg series is J=7/2.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom