z-logo
open-access-imgOpen Access
Focusing effect of channel target on ultra-intense laser-accelerated proton beam
Author(s) -
Yang Si-Qian,
Weimin Zhou,
Siming Wang,
Jing Jiao,
Zhimeng Zhang,
Leifeng Cao,
Yuqiu Gu,
Baohan Zhang
Publication year - 2017
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.66.184101
Subject(s) - plasma channel , proton , atomic physics , electron , laser , beam (structure) , transverse plane , physics , electric field , beam divergence , acceleration , foil method , optics , pulse (music) , materials science , laser beam quality , nuclear physics , laser beams , structural engineering , classical mechanics , quantum mechanics , detector , composite material , engineering
In laser proton acceleration, the inevitable transverse divergence of proton beam restricts its applications in many fields. In this paper, a structured target with a properly wide channel attached to the backside of a foil is proposed, and the interaction of the ultra-short laser pulse with the structured channel target is investigated via two-dimensional particle-in-cell simulation. The simulations show that for the structured channel target, electrons on the front surface are heated by the incident high-intensity laser pulse and then the induced hot electrons transport through the target to the rear surface, building an electrostatic field in the longitudinal direction to accelerate the protons to high energies as the typical target normal sheath acceleration scheme. In the case of the structured channel target, the simulation results indicate that a strong transverse electrostatic field is created by charge separation along the inner surface of the channel while hot electrons propagate along the channel side walls under the guidance of self-induced magnetic and electric fields, which can focus the emitted proton beam transversely, leading to a smaller divergence. By comparing the channel target case with the traditional foil target case under the same conditions, it is found that the divergence angle of the proton beam from the channel target is reduced significantly. Protons with energies above 3 MeV have a divergence angle of 5.3° at the time of 500 fs in the channel target case, while the value is 17.1° in the foil case for a laser intensity of 5.4×1019 W/cm2. Additionally, the effect of the channel target on the maximum proton energy is considered. The simulation results of the energy spectra reveal that the maximum proton cut-off energy of the channel target is about 1 MeV lower than that of the foil target. This small energy loss is due to the refluxing of the cold electrons on the channel walls, which suppresses the increasing of the sheath potential. Therefore, it is concluded that the focusing electric field can work on the proton beam effectively, leading to a better collimation with conserving the proton energy by using the proposed channel target. Especially when the inner diameter of the channel target is comparable to the laser focal spot size, the proton beam can be confined to a small divergence, and a relatively higher laser energy conversion efficiency can be ensured as well.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here