z-logo
open-access-imgOpen Access
Particle simulation and analysis of threshold for multicarrier multipactor
Author(s) -
Xinbo Wang,
Xiaoning Zhang,
Yun Li,
Wanzhao Cui,
Hongtai Zhang,
Yongdong Li,
Hongguang Wang,
Yufei Zhai,
Chunliang Liu
Publication year - 2017
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.66.157901
Subject(s) - microwave , computational physics , secondary emission , electromagnetic environment , electron , physics , optics , materials science , computer science , telecommunications , quantum mechanics
The multicarrier multipactor is a phenomenon that can be observed in vacuum environment due to the effect of secondary electron emission. Accurate analysis of the threshold of multicarrier multipactor is crucial for the long-term reliability of high-power spaceborne microwave system, and therefore it has been attracting more and more interests in fields of high-power microwave community, plasma physics and aerospace engineering. Recently, a new mechanism of multicarrier multipactor, termed long-term multipactor, induced by sustained accumulation of residual electrons between successive envelope periods of multicarrier signals has received much attention. Comparing with the single-event multipactor induced by the electron accumulation inside a single envelop period, researchers tend to believe that the threshold of the long-term discharge should be lower. However, recent experimental results show an opposite conclusion. In this work, in order to investigate the contradiction between the experimental and theoretical studies on the thresholds of multicarrier multipactors, particle simulations are used to simulate the evolution process of the multicarrier multipactor under the same conditions and judgement criterion. The behavioral characteristics and occurrence condition for multicarrier multipactors, especially the single-event ones, are analyzed based on a power scanning analysis, and the conflicting results are effectively explained. Our simulations show that if the evolution process of a multipactor can be divided into three phases, i.e., establishment phase, critical phase and saturation phase, the experimental reflection coefficient can be corresponding to the reflection coefficient simulated in the critical phase. The simulation results indicate that the type of the multipactor discharge would depend on the configuration of multicarrier signals. For multicarrier signals with relatively narrow bandwidths, single-event multicarrier multipactors could occur in the first place at a lower threshold power. Therefore, the threshold of a long-term discharge is not necessarily lower than that of a single-event one. This conclusion is important for estimating and suppressing the multicarrier multipactors in the design of high-power spaceborne microwave components.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here