z-logo
open-access-imgOpen Access
Determination of the hyperfine coupling constants of the 5D5/2 state of 85Rb atoms by using high signal-to-noise ratio electromagnetically-induced transparency spectra
Author(s) -
Guang Yang,
Jie Wang,
Junmin Wang
Publication year - 2017
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.66.103201
Subject(s) - hyperfine structure , electromagnetically induced transparency , atomic physics , quadrupole , coupling (piping) , hyperfine coupling , spectral line , materials science , physics , signal (programming language) , computer science , metallurgy , programming language , astronomy
We report the hyperfine splitting measurement of the 85Rb 5D5/2 state by electromagnetically induced transparency spectroscopy with high signal-to-noise ratio in the 85Rb 5S1/2-5P3/2-5D5/2 ladder-type system (m 780 nm + 776 nm). The frequency calibration is performed by employing a phase-type electro-optic modulator with a confocal Fabry-Perot cavity. From the measured hyperfine splittings among the manifolds of (F=5), (F=4) and (F=3) of the 85Rb 5D5/2 state, we determine the magnetic dipole hyperfine coupling constant (A= (-2.222 0.019) MHz) and the quadrupole coupling constant (B= (2.664 0.130) MHz) of 5D5/2 state of 85Rb atoms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom