z-logo
open-access-imgOpen Access
Comprehensive evaluation and analysis of the weighted-sum-of-gray-gases radiation model
Author(s) -
Chu Hua-Qiang,
Yan Feng,
Cao Wen-Jian,
Fei Ren,
Gu Ming-Yan
Publication year - 2017
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.66.094207
Subject(s) - radiative transfer , combustion , emissivity , thermal radiation , heat transfer , atmospheric radiative transfer codes , physics , radiation , thermodynamics , environmental science , materials science , mechanics , optics , chemistry , organic chemistry
In oxy-fuel combustion with CO2 recycle, the non-gray gas radiative heat transfer characteristics of gaseous participating media are different from those in air-fuel combustion. Therefore, the choice of a non-gray gas radiation model should be carefully made since it plays an important role in modeling the oxy-fuel combustion system. Using the statistical narrow-band model as a benchmark, in this paper we provide a comprehensive assessment of the development of the weighted-sum-of-gray-gase (WSGG) model, which has been achieved in recent years. The results show that the predicted values obtained by the WSGG model are generally reasonably accurate, though some significant differences still exist. For the total emissivity, the WSGG models by Dorigon et al. (2013 Int. J. Heat Mass Transfer 64 863) and Bordbar et al. (2014 Combust. Flame 161 2435) are consistent well with the benchmark model, within a relative error of less than about 20%. Under the conditions of PH2O/PCO2=1 and 2, the magnitudes of radiative heat transfer between two planar plates are calculated using the discrete-ordinate method and WSGG model. It is found that the radiative source and radiative net heat flux obtained using the WSGG model parameters of Dorigon et al. and Bordbar et al. are more accurate than using other parameters developed in the literature (about 10% relative errors). It is worth noting that the WSGG model parameters of Jonhansson et al. (2011 Combust. Flame 158 893) and Bordbar et al. have a wider range of applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here