
Barrier growth temperature of InGaAs/AlGaAs-quantum well infrared photodetector
Author(s) -
Huo Dayun,
Shi Zhenwu,
Wei Zhang,
Tang Shen-Li,
Peng Changsi
Publication year - 2017
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.66.068501
Subject(s) - quantum well , relaxation (psychology) , materials science , photoluminescence , molecular beam epitaxy , quantum well infrared photodetector , infrared , optoelectronics , condensed matter physics , stress relaxation , diffraction , photodetector , epitaxy , optics , nanotechnology , physics , creep , laser , psychology , social psychology , layer (electronics) , composite material
The InGaAs/AlGaAs quantum wells have been extensively applied to quantum well infrared photodetector of mid-wavelength. In this letter, four samples of 2.4 nm In0.35Ga0.65As/40 nm Al0.34Ga0.66As multi-quantum wells are grown by molecular beam epitaxy with the InGaAs wells growing all at a temperature of 465℃ but the AlGaAs wells growing at temperatures of 465℃, 500℃, 545℃, and 580℃ respectively. The dependence of InGaAs quantum well strain relaxation on the AlGaAs growth temperature is systematically studied by photoluminescence spectroscopy and X-ray diffraction and then the thermal-induced relaxations of three key-stages are clearly observed in the following temperature ranges. 1) 465-500℃ for the stage of elastic relaxation: the phase separation begins to take place with a low defect density; 2) 500-545℃ for the transition stage from elastic relaxation to plastic relaxation: the phase separation will be further intensified with defect density increasing; 3) 545-580℃ for the fast stage dominated by elastic relaxation and the defect density will sharply increase. Especially when AlGaAs temperature increases to 580℃, a very serious plastic relaxation will take place and the InGaAs quantum well will be dramatically destroyed.