z-logo
open-access-imgOpen Access
Receptivity of the steady cross-flow vortices in three-dimensional boundary layer
Author(s) -
Luyu Shen,
Changgen Lu
Publication year - 2017
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.66.014703
Subject(s) - boundary layer , laminar flow , turbulence , discretization , boundary layer thickness , finite difference , vortex , physics , direct numerical simulation , finite difference method , mechanics , boundary (topology) , mathematics , geometry , classical mechanics , mathematical analysis , reynolds number
The prediction and control of the laminar-turbulent transition are always one of the most concerned frontiers and hot topics.Receptivity is the initial stage of the laminar-turbulent transition process in the boundary layer,which decides the physical process of the turbulent formation.To date,the researches of receptivity in the three-dimensional boundary layer are much less than those in the two-dimensional boundary layer;while most of the real laminar-turbulent transition in practical engineering occurs in three-dimensional boundary layers.Therefore,receptivity under the threedimensional wall local roughness in a typical three-dimensional boundary layer,i.e.,a 45° back swept infinite flat plate, is numerically studied.And a numerical method for direct numerical simulation (DNS) is constructed in this paper by using fourth order modified Runge-Kutta scheme for temporal march and high-order compact finite difference schemes based on non-uniform mesh for spatial discretization:the convective term is discretized by fifth-order upwind compact finite difference schemes;the pressure term is discretized by sixth-order compact finite difference schemes;the viscous term is discretized by fifth-order compact finite difference schemes;and the pressure equation is solved by third-order finite difference schemes based on non-uniform mesh.As a result,the excited steady cross-flow vortices are observed in the three-dimensional boundary layer.In addition,the relations of three-dimensional boundary-layer receptivity with the length,the width,and the height of three-dimensional wall localized roughness respectively are also ascertained.Then, the influences of the different distributions,the geometrical shapes,and the location to the flat-plate leading-edge of the three-dimensional wall local roughness,and multiple three-dimensional wall local roughness distributed in streamwise and spanwise directions on three-dimensional boundary-layer receptivity are considered.Finally,the effect of the distance between the midpoint of the three-dimensional wall localized roughness and the back-swept angle on three-dimensional boundary-layer receptivity is studied.The intensive research of receptivity in the three-dimensional boundary-layer receptivity will provide the basic theory for awareness and understanding of the laminar-turbulent transition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom