
Enhanced superconducting properties in MOD-YBCO thick films with CeO2 interlayer
Author(s) -
Fazhu Ding,
Hong Gu,
Hongyan Wang,
Fei Qü,
Shang Hong-Jing,
Huiliang Zhang,
Dong Ze-Bin,
He Zhang,
Weiwei Zhou
Publication year - 2016
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.65.097401
Subject(s) - materials science , texture (cosmology) , thin film , superconductivity , composite material , substrate (aquarium) , sputtering , critical current , coating , deposition (geology) , scanning electron microscope , condensed matter physics , nanotechnology , physics , artificial intelligence , computer science , paleontology , oceanography , sediment , geology , image (mathematics) , biology
In YBa2Cu3O7-x (YBCO) film there exists thickness effect: the critical current density of YBCO film drops precipitously as the coating thickness increases, especially in the case that the thickness of YBCO film exceeds 1 m. In this paper, we introduce very thin layers of CeO2 into YBCO layers and successfully fabricate the structure of YBCO/YBCO/CeO2/YBCO superconducting thick film. Firstly, YBCO films with two layers are fabricated on a LaAlO3 substrate by a multiple coatings process using a trifluoroacetate metal organic deposition method. Secondly, CeO2 thin films are deposited on YBCO films by RF-sputtering. Finally, we prepare the third YBCO film on CeO2interlayer. No cracks are observed in scanning electron microscopy images of these films; further, the majority of the grains in the films are well-textured and c-axis oriented. The full-width-half-maximum of the out-of-plane texture is measured to be 1.395 for the multilayer YBCO film at a thickness of 2 m Using this multilayer technology, we achieve Jc values of up to 1.36 MA/cm2 (77 K, self-field) in films as thick as 2 m, for an extrapolated critical current of 272 A/cm. We attribute the enhanced performance of the thick YBCO film to the CeO2 interlayer which playsan important role in transmission texture and stress relaxation.