z-logo
open-access-imgOpen Access
High efficiency all-optical diode based on hexagonal lattice photonic crystal waveguide
Author(s) -
Yunfeng Liu,
Bin Liu,
Xiaodong He,
Shujing Li
Publication year - 2016
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.65.064207
Subject(s) - finite difference time domain method , optics , transmittance , materials science , photonic crystal , optoelectronics , waveguide , diode , optical isolator , physics , laser
A high efficiency all-optical diode based on 2D hexagonal lattice photonic crystal (PC) waveguide is proposed. The structure is asymmetrically coupled by a high Q factor micro-cavity-containing nonlinear Kerr medium and a F-P cavity in PC waveguide. The transmission properties are numerically investigated by finite-difference time-domain (FDTD) method. Because of interference between the two cavities, the structure can achieve the function of forward transmission and backward cut-off under a suitable light intensity. For light incidence close to the direction of micro-cavity, nonlinear Kerr effect of micro-cavity can be excited by a certain light intensity. Then the resonant frequency of Fano cavity will change and forward incidence becomes transmission from reflective state. But for light incidence away from the direction of micro-cavity, the field distribution is asymmetric due to the asymmetric structure, so backward incidence needs stronger incidence light to excite Kerr effect and keeps reflective state. This design of all-optical diode has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, and ease of integration, and so on.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here