z-logo
open-access-imgOpen Access
Refractive index of Z-cut quartz under magnetically driven quasi-isentropic compression
Author(s) -
Xuping Zhang,
Luo Bin,
Changfa Tao,
Guiji Wang,
Fuli Tan,
Jianhua Zhao,
Chengwei Sun,
Cangli Liu
Publication year - 2016
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.65.046201
Subject(s) - materials science , refractive index , optics , quartz , mechanics , physics , composite material
The refractive index of Z-cut quartz under magnetically driven quasi-isentropic compression is researched by using the pulsed power generator CQ-4. Its velocities of interface between the aluminum panel and the window are measured by a four-channel dual laser heterodyne velocimeter, which is operated at an incident laser wavelength of 1550 nm. The history profile of magnetic pressure on the electrodes is obtained by a backward integration calculation of the aluminum/LiF interface velocity. And then the pressure history profile is used in the LS-DYNA simulation to get the true particle velocity of the aluminum/quartz interface. Combining with the apparent particle of aluminum/quartz interface which is obtained from experiments, a continuous index of refraction in Z-cut quartz has been obtained at up to a pressure of 14.55 GPa as the longitudinal stress is gradually increased to its elastic limit. The relation between the apparent particle and true particle velocities can be fitted by a polynomial, and the required derivative obtained by differentiation of that polynomial. Refractive index determined from the linear fitting parameters is n=1.087 ( 0.008)+0.4408 /0, which agrees well with the previous shock results. Results from polarizability analysis suggest that the temperature and loading path should have less effect on the refractive index of Z-cut quartz within its elastic limit.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here