
Formation mechanism of concentric-ring pattern in dielectric barrier discharge
Author(s) -
Weibo Liu,
Lifang Dong
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.245202
Subject(s) - concentric , spiral (railway) , ring (chemistry) , voltage , physics , materials science , optics , geometry , atomic physics , mathematics , chemistry , mathematical analysis , organic chemistry , quantum mechanics
Concentric-ring pattern is observed in an Ar/air mixture dielectric barrier discharge. The discharge images within one half voltage circle are taken by an intensified-charge coupled device camera, indicating that the discharge filaments are the basic units of the concentric-ring pattern. By comparing the six instantaneous images corresponding to three successive positive and negative half voltages, it is proved that the concentric-ring pattern seen with naked eyes is formed by the numerous discharge filaments located at different positions during successive acquisition intervals. With applied voltage increasing, concentric-ring pattern can transform into spiral, and then into concentric-ring pattern again. By analyzing the features of formation and transformation of these two patterns, it is inferred that the two patterns have similar dynamic mechanisms. Discharge powers of concentric-ring pattern and spiral are calculated respectively, and the results show that the power increases linearly approximately with applied voltage increasing. The correlation coefficients of concentric-ring pattern are compared with those of spiral, and the results show that the correlation coefficient of concentric-ring pattern is relatively low and irregular, while the correlation coefficient of spiral is relatively high and has an oscillatory characteristic.