z-logo
open-access-imgOpen Access
High precision and fast method for absolute distance measurement based on resampling technique used in FM continuous wave laser ranging
Author(s) -
Xiangchuan Meng,
FuMin Zhang,
Xinghua Qu
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.230601
Subject(s) - ranging , interferometry , optics , michelson interferometer , signal (programming language) , laser , optical path length , physics , metrology , interference (communication) , accuracy and precision , computer science , telecommunications , channel (broadcasting) , quantum mechanics , programming language
Frequency modulated continuous wave (FMCW) laser ranging is one of the most interesting techniques for precision distance metrology. It is a promising candidate for absolute distance measurement at large standoff distances (10 to 100 m) with high precision and accuracy, and no cooperation target is needed during the measuring process. How to improve the measurement resolution in practice has been the research focus of the FMCW laser ranging in recent years.FMCW laser ranging system uses the method which may convert the measurement of flight time to the frequency measurement, while the ranging resolution can be determined by the tuning range of the optical frequency sweep in theory. The main impact-factor that reduces the resolution is the tuning nonlinearity of the laser source, which may cause an amount of error points within the sampling signal. So a dual-interferometric FMCW laser ranging system is adopted in this paper. Compared to the traditional Michelson scheme, an assistant interferometer is added. The assistant interferometer has an all-fiber optical Mach-Zehnder configuration, and the delay distance is at least 2 times longer than OPD (optical path difference) of the main interferometer. Because it provides the reference length, the length of the fiber must remain unchanged. The interference signal is obtained on the photodetector. At the time points of every peak and bottom of the auxiliary interferometer signal, the beating signal from the main interferometer is re-sampled. The original signal is not the equal time intervals, while the re-sampled signal is the equal optical frequency intervals. Based on the property of the re-sampled signal, a method by splicing the re-sampled signal to optimize the signal processing is proposed, by which the tuning range of the laser source limitation can be broken and high precision can be easily obtained. Also, a simple high-speed measuring method is proposed.Based on all the above principles, the two-fiber optical frequency-modulated continuous wave laser ranging system is designed. The delay fiber in the FMCW laser ranging system is 40.8 m long, and the tuning speed and tuning range of the laser source are set to 10 nm/s and 40 nm respectively. Experiments show that the optimization method can effectively improve the measurement resolution and measuring efficiency; in the 26 measuring ranges, 50 m resolution can be easily obtained and the error is less than 100 m.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here