Open Access
Changes of stress and luminescence properties in GaN-based LED films before and after transferring the films to a flexible layer on a submount from the silicon epitaxial substrate
Author(s) -
Binbin Huang,
Chuanbing Xiong,
Yingwen Tang,
Zhang Chao-Yu,
Huang Ji-Feng,
Guangxu Wang,
Junlin Liu,
Fengyi Jiang
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.177804
Subject(s) - materials science , optoelectronics , epitaxy , substrate (aquarium) , silicon , layer (electronics) , sapphire , stress (linguistics) , light emitting diode , gallium nitride , nitride , composite material , optics , linguistics , philosophy , laser , oceanography , physics , geology
Due to the lack of GaN substrates, hetero-epitaxial growth of GaN thin films is usually carried out on a foreign substrate. There are three kinds of substrate for GaN: sapphire, silicon carbide, and silicon; the sapphire substrate is the chief one, currently. Due to the availability of large scale and low cost of Si substrates, in recent years, extensive research has been devoted to the development of gallium nitride (GaN) optoelectronic devices on silicon substrates. Because of the large lattice mismatch and thermal-expansion cofficient difference between Si and GaN, it is difficult to grow thick enough crack-free GaN LED film on Si substrates. The two main kinds of methods for overcoming the crack problem are using the patterned Si substate and the thick AlGaN buffer layer. Although the two techniques could solve the problem of crack by cooling after growth, they will lead to an increase in tensile stress for GaN on Si. When making vertical-structured LED devices by transferring the GaN-based LED thin films from Si substrate to a new submount, this tensile stress will be partially released; but few researches have been made about the stress change before and after the transfer of the film, although the stress in GaN is an important factor that alters the energy band structure and may influence the vibrational properties. In this paper, we grow the crack-free GaN-based LED films on patterned Si(111), then light-emitting diode (LED) thin films are successfully transferred from the original Si (111) substrate to the submount with a flexible layer, and then the LED films without the influence of the submount and substrate are fabricated. In the following experiments, the strain-stress variation of the LED film is determined by using nondestructive high resolution X-ray diffraction (HRXRD) in detail, and the variation of photoluminescence (PL) properties of the film is studied too. Results obtained are as follows: 1) When the LED film is transferred to the flexible submount, the huge tensile stress will turn into compressive stress, and the latter in the InGaN layers will increase. 2) The In concentration in the (InGaN/GaN) MQW (multi-quantum well) systems can be evaluated with the help of reciprocal space maps (RSM) around the symmetric (0002) and asymmetric (1015) Bragg reflections. The In concentration in (InGaN/GaN) MQW will reduce when the GaN-based LED film is transferred to the flexible submount. 3) The PL spectra of the LED films will obviously appear red shift, after they are transferred to the flexible submount.