z-logo
open-access-imgOpen Access
Influence of earth's reflective radiation on space target for space based imaging
Author(s) -
PP Yan,
Chi Ma,
WJ She
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.169501
Subject(s) - position (finance) , space (punctuation) , physics , radiation , optics , surface (topology) , reflection (computer programming) , satellite , computer science , transformation matrix , infrared , coordinate system , remote sensing , computer vision , mathematics , geometry , astronomy , kinematics , finance , classical mechanics , economics , programming language , operating system , geology
The space-based surveillance, which would mainly use the space-based visible, has great value for civil and military applications currently and for a fairly long future period. In space-based surveillance, the visible and near-infrared radiation characteristics of the space target are influenced by its attitude variation. This influence is especially prominent in space-based imaging. In some ways, solar radiation cannot arrive at the surface of the space target, or the arriving radiation is not uniformly distributed because of the space target's strong reflection at a particular position. In order to solve these problems, the visible and near-infrared illumination characteristics of the space target surface are analyzed. Moreover, a notion that earth's reflective radiation can be used as illumination for space target imaging is given, and an accurate modeling method is proposed. Firstly, based on diffuse reflectance model, a method of mathematically calculating the illumination at space target's position from earth's reflective radiation is established. And a formula for calculating illumination is derived. Secondly, the coordinates of sun and space target at any time can be obtained by the Satellite tool kit software, in which the complicated multiplying matrix and coordinate transformation algorithm introduced in some references are avoided. Thirdly, the method of estimating earth's reflective radiation region at arbitrary moment is introduced. The grid division method is generated and the uniform sampling is used in each small area. Fourthly, the position of a surface cell is transformed from the sphere reference frame into the J2000.0 inertial frame. The earth's reflective radiation can be calculated through numerical integration. Finally, the illumination from earth's reflective radiation to a sun synchronous orbit satellite in an imaging mission based on space is calculated by the given parameters. The results show that the earth's reflective radiation is luminous enough for space target imaging when the satellite passes through arctic. When the satellite moves on the orbit, we can obtain more detailed information about target satellites' bottom then the ground simulation imaging. The on-orbit imaging results demonstrate the validity of the modeling method, which could support the foundation of our space-based surveillance system theoretically and technically and could be used as a reference of space-based orbit measurement and determination in deep space exploration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here