
The mechanisms of electric-dipole spin resonance in quasi-one-dimensional semiconductor quantum dot
Author(s) -
Rui Li
Publication year - 2015
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.167303
Subject(s) - physics , condensed matter physics , zeeman effect , spin engineering , zero field splitting , spin (aerodynamics) , magnetic dipole , quantum dot , spin hall effect , dipole , electric field , nitrogen vacancy center , qubit , spinplasmonics , spin polarization , magnetic field , electron , quantum , quantum mechanics , thermodynamics , spins
Because of the long coherence time and the easy way to achieve the qubit scalability, quantum dot spin qubit has obtained considerable attentions recently. Single spin manipulation is usually achieved using the traditional electron spin resonance technique. This method not only needs a static Zeeman field, but also needs an ac magnetic field which is perpendicular to the static one. However, it is not easy to produce a local ac magnetic field experimentally. Recently, instead of an ac magnetic field, an ac electric field can also be used to manipulate an electron spin, an effect called electric-dipole spin resonance. As is well-known, there is no direct interaction between the spin and the electric field. Thus, the electric-dipole spin resonance must be mediated by some mechanisms. These mediums in the quantum dot can be: the slanting magnetic field, the spin-orbit coupling, and the electron-nucleus hyperfine interaction. This paper summarizes three main mechanisms of the electron-dipole spin resonance in semiconductor quantum dot.