z-logo
open-access-imgOpen Access
Preparation and upconversion luminescence properties of Ba5SiO4Cl6: Yb3+, Er3+, Li+ phosphors
Author(s) -
Yang Jian-Zhi,
Qiu Jianbei,
Yang Zheng-Wen,
Zhiguo Song,
Yong Yang,
Zhou Da-Cheng
Publication year - 2015
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.64.138101
Subject(s) - phosphor , luminescence , photon upconversion , materials science , excited state , doping , ion , excitation , emission intensity , analytical chemistry (journal) , optoelectronics , photochemistry , atomic physics , chemistry , physics , organic chemistry , quantum mechanics , chromatography
The Ba5SiO4Cl6: Yb3+, Er3+, Li+ phosphor has been prepared by high temperature solid state reaction, and their upconversion (UC) luminescence properties and mechanisms are investigated. The UC emission bands located at 525 nm (2H11/24I15/2), 548 nm (4S3/24I15/2), and 662 nm (4F9/24I15/2) due to Er3+ are observed under the excitation of 980 nm. UC luminescence of Ba5SiO4Cl6: Yb3+, Er3+ phosphors is increased with increasing Er3+ and Yb3+ concentration due to the energy transfer enhancement of Er3+ and Yb3+. Based on the relations of UC luminescence intensity and excitation light power, the UC luminescence mechanisms are discussed. At a low excited power (below 0.8 W), the two-photon processes are involved in both green and red UC emission mechanisms. When the power exceeds 0.9 W, the green and red UC emission is a four-photon process. One new and interesting UC emission mechanism may occur in the Ba5SiO4Cl6: Yb3+, Er3+ phosphors. Both green and red UC emissions at a higher pumping power are generated by photon avalanche UC process. Influence of Li+ doping on the UC luminescence of Ba5SiO4Cl6: Yb3+, Er3+ phosphors is investigated. Result demonstrates that Li+ ion doping could enhance the UC luminescence of Ba5SiO4Cl6: Yb3+, Er3+, which is attributed to the distortion of the local symmetry around Er3+.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom